Influence Maximization on Social Graphs: A Survey
Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technica...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2018-10, Vol.30 (10), p.1852-1872 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1872 |
---|---|
container_issue | 10 |
container_start_page | 1852 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 30 |
creator | Li, Yuchen Fan, Ju Wang, Yanhao Tan, Kian-Lee |
description | Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research. |
doi_str_mv | 10.1109/TKDE.2018.2807843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8295265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295265</ieee_id><sourcerecordid>2117164998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NJJNN4q3UWosVD63nkGYT3NLu1qQr1qd3S4sw8M_h-2fgI-QW6ACA6ofF69N4wCioAVNUKuRnpAdCqJyBhvNupwg5cpSX5CqlFaVUSQU9AtM6rFtfO5-92Z9qU_3aXdXUWTfzxlV2nU2i3X6mx2yYzdv47ffX5CLYdfI3p-yTj-fxYvSSz94n09FwljuucJfLAhx4YGVAWTIhtPNLzYNj6Km2pZYOpRRcqJLJUCIUCpVG7WxAW1q55H1yf7y7jc1X69POrJo21t1LwwAkFKi16ig4Ui42KUUfzDZWGxv3Bqg5mDEHM-ZgxpzMdJ27Y6fy3v_zimnBCsH_ADVVXYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117164998</pqid></control><display><type>article</type><title>Influence Maximization on Social Graphs: A Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</creator><creatorcontrib>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</creatorcontrib><description>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2807843</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>algorithm design ; Algorithms ; Classification algorithms ; Computational modeling ; Diffusion processes ; Influence maximization ; information diffusion ; Information dissemination ; Integrated circuit modeling ; Maximization ; Social network services ; Social networks ; Stochastic processes ; Taxonomy</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-10, Vol.30 (10), p.1852-1872</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</citedby><cites>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</cites><orcidid>0000-0003-4729-9903 ; 0000-0001-9646-291X ; 0000-0002-7661-3917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8295265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Fan, Ju</creatorcontrib><creatorcontrib>Wang, Yanhao</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><title>Influence Maximization on Social Graphs: A Survey</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</description><subject>algorithm design</subject><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Diffusion processes</subject><subject>Influence maximization</subject><subject>information diffusion</subject><subject>Information dissemination</subject><subject>Integrated circuit modeling</subject><subject>Maximization</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Stochastic processes</subject><subject>Taxonomy</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NJJNN4q3UWosVD63nkGYT3NLu1qQr1qd3S4sw8M_h-2fgI-QW6ACA6ofF69N4wCioAVNUKuRnpAdCqJyBhvNupwg5cpSX5CqlFaVUSQU9AtM6rFtfO5-92Z9qU_3aXdXUWTfzxlV2nU2i3X6mx2yYzdv47ffX5CLYdfI3p-yTj-fxYvSSz94n09FwljuucJfLAhx4YGVAWTIhtPNLzYNj6Km2pZYOpRRcqJLJUCIUCpVG7WxAW1q55H1yf7y7jc1X69POrJo21t1LwwAkFKi16ig4Ui42KUUfzDZWGxv3Bqg5mDEHM-ZgxpzMdJ27Y6fy3v_zimnBCsH_ADVVXYo</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Li, Yuchen</creator><creator>Fan, Ju</creator><creator>Wang, Yanhao</creator><creator>Tan, Kian-Lee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4729-9903</orcidid><orcidid>https://orcid.org/0000-0001-9646-291X</orcidid><orcidid>https://orcid.org/0000-0002-7661-3917</orcidid></search><sort><creationdate>20181001</creationdate><title>Influence Maximization on Social Graphs: A Survey</title><author>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>algorithm design</topic><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Diffusion processes</topic><topic>Influence maximization</topic><topic>information diffusion</topic><topic>Information dissemination</topic><topic>Integrated circuit modeling</topic><topic>Maximization</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Stochastic processes</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Fan, Ju</creatorcontrib><creatorcontrib>Wang, Yanhao</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yuchen</au><au>Fan, Ju</au><au>Wang, Yanhao</au><au>Tan, Kian-Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence Maximization on Social Graphs: A Survey</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><spage>1852</spage><epage>1872</epage><pages>1852-1872</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2807843</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4729-9903</orcidid><orcidid>https://orcid.org/0000-0001-9646-291X</orcidid><orcidid>https://orcid.org/0000-0002-7661-3917</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2018-10, Vol.30 (10), p.1852-1872 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_8295265 |
source | IEEE Electronic Library (IEL) |
subjects | algorithm design Algorithms Classification algorithms Computational modeling Diffusion processes Influence maximization information diffusion Information dissemination Integrated circuit modeling Maximization Social network services Social networks Stochastic processes Taxonomy |
title | Influence Maximization on Social Graphs: A Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20Maximization%20on%20Social%20Graphs:%20A%20Survey&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Yuchen&rft.date=2018-10-01&rft.volume=30&rft.issue=10&rft.spage=1852&rft.epage=1872&rft.pages=1852-1872&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2807843&rft_dat=%3Cproquest_RIE%3E2117164998%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117164998&rft_id=info:pmid/&rft_ieee_id=8295265&rfr_iscdi=true |