Influence Maximization on Social Graphs: A Survey

Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2018-10, Vol.30 (10), p.1852-1872
Hauptverfasser: Li, Yuchen, Fan, Ju, Wang, Yanhao, Tan, Kian-Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 10
container_start_page 1852
container_title IEEE transactions on knowledge and data engineering
container_volume 30
creator Li, Yuchen
Fan, Ju
Wang, Yanhao
Tan, Kian-Lee
description Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.
doi_str_mv 10.1109/TKDE.2018.2807843
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8295265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295265</ieee_id><sourcerecordid>2117164998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NJJNN4q3UWosVD63nkGYT3NLu1qQr1qd3S4sw8M_h-2fgI-QW6ACA6ofF69N4wCioAVNUKuRnpAdCqJyBhvNupwg5cpSX5CqlFaVUSQU9AtM6rFtfO5-92Z9qU_3aXdXUWTfzxlV2nU2i3X6mx2yYzdv47ffX5CLYdfI3p-yTj-fxYvSSz94n09FwljuucJfLAhx4YGVAWTIhtPNLzYNj6Km2pZYOpRRcqJLJUCIUCpVG7WxAW1q55H1yf7y7jc1X69POrJo21t1LwwAkFKi16ig4Ui42KUUfzDZWGxv3Bqg5mDEHM-ZgxpzMdJ27Y6fy3v_zimnBCsH_ADVVXYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117164998</pqid></control><display><type>article</type><title>Influence Maximization on Social Graphs: A Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</creator><creatorcontrib>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</creatorcontrib><description>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2807843</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>algorithm design ; Algorithms ; Classification algorithms ; Computational modeling ; Diffusion processes ; Influence maximization ; information diffusion ; Information dissemination ; Integrated circuit modeling ; Maximization ; Social network services ; Social networks ; Stochastic processes ; Taxonomy</subject><ispartof>IEEE transactions on knowledge and data engineering, 2018-10, Vol.30 (10), p.1852-1872</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</citedby><cites>FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</cites><orcidid>0000-0003-4729-9903 ; 0000-0001-9646-291X ; 0000-0002-7661-3917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8295265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Fan, Ju</creatorcontrib><creatorcontrib>Wang, Yanhao</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><title>Influence Maximization on Social Graphs: A Survey</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</description><subject>algorithm design</subject><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Diffusion processes</subject><subject>Influence maximization</subject><subject>information diffusion</subject><subject>Information dissemination</subject><subject>Integrated circuit modeling</subject><subject>Maximization</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Stochastic processes</subject><subject>Taxonomy</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NJJNN4q3UWosVD63nkGYT3NLu1qQr1qd3S4sw8M_h-2fgI-QW6ACA6ofF69N4wCioAVNUKuRnpAdCqJyBhvNupwg5cpSX5CqlFaVUSQU9AtM6rFtfO5-92Z9qU_3aXdXUWTfzxlV2nU2i3X6mx2yYzdv47ffX5CLYdfI3p-yTj-fxYvSSz94n09FwljuucJfLAhx4YGVAWTIhtPNLzYNj6Km2pZYOpRRcqJLJUCIUCpVG7WxAW1q55H1yf7y7jc1X69POrJo21t1LwwAkFKi16ig4Ui42KUUfzDZWGxv3Bqg5mDEHM-ZgxpzMdJ27Y6fy3v_zimnBCsH_ADVVXYo</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Li, Yuchen</creator><creator>Fan, Ju</creator><creator>Wang, Yanhao</creator><creator>Tan, Kian-Lee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4729-9903</orcidid><orcidid>https://orcid.org/0000-0001-9646-291X</orcidid><orcidid>https://orcid.org/0000-0002-7661-3917</orcidid></search><sort><creationdate>20181001</creationdate><title>Influence Maximization on Social Graphs: A Survey</title><author>Li, Yuchen ; Fan, Ju ; Wang, Yanhao ; Tan, Kian-Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-761c1e12df47d2559ceb93fc24e09ad97c4775358d27fd416848949caf4ada7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>algorithm design</topic><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Diffusion processes</topic><topic>Influence maximization</topic><topic>information diffusion</topic><topic>Information dissemination</topic><topic>Integrated circuit modeling</topic><topic>Maximization</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Stochastic processes</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuchen</creatorcontrib><creatorcontrib>Fan, Ju</creatorcontrib><creatorcontrib>Wang, Yanhao</creatorcontrib><creatorcontrib>Tan, Kian-Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yuchen</au><au>Fan, Ju</au><au>Wang, Yanhao</au><au>Tan, Kian-Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence Maximization on Social Graphs: A Survey</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><spage>1852</spage><epage>1872</epage><pages>1852-1872</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2807843</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4729-9903</orcidid><orcidid>https://orcid.org/0000-0001-9646-291X</orcidid><orcidid>https://orcid.org/0000-0002-7661-3917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2018-10, Vol.30 (10), p.1852-1872
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_8295265
source IEEE Electronic Library (IEL)
subjects algorithm design
Algorithms
Classification algorithms
Computational modeling
Diffusion processes
Influence maximization
information diffusion
Information dissemination
Integrated circuit modeling
Maximization
Social network services
Social networks
Stochastic processes
Taxonomy
title Influence Maximization on Social Graphs: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20Maximization%20on%20Social%20Graphs:%20A%20Survey&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Yuchen&rft.date=2018-10-01&rft.volume=30&rft.issue=10&rft.spage=1852&rft.epage=1872&rft.pages=1852-1872&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2807843&rft_dat=%3Cproquest_RIE%3E2117164998%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117164998&rft_id=info:pmid/&rft_ieee_id=8295265&rfr_iscdi=true