CDT-Based Gaussian Sampling: From Multi to Double Precision
The Rényi divergence is a measure of closeness of two probability distributions which has found several applications over the last years as an alternative to the statistical distance in lattice-based cryptography. A tight bound has recently been presented for the Rényi divergence of distributions th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2018-11, Vol.67 (11), p.1610-1621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1621 |
---|---|
container_issue | 11 |
container_start_page | 1610 |
container_title | IEEE transactions on computers |
container_volume | 67 |
creator | Aguilar-Melchor, Carlos Ricosset, Thomas |
description | The Rényi divergence is a measure of closeness of two probability distributions which has found several applications over the last years as an alternative to the statistical distance in lattice-based cryptography. A tight bound has recently been presented for the Rényi divergence of distributions that have a bounded relative error. We show that it can be used to bound the precision requirement in Gaussian sampling to the IEEE 754 floating-point standard double precision for usual lattice-based signature parameters by using a modified cumulative distribution table (CDT), which reduces the memory needed by CDT-based algorithms and, makes their constant-time implementation faster and simpler. Then, we apply this approach to a variable-center variant of the CDT algorithm which occasionally requires the online computation of the cumulative distribution function. As a result, the amount of costly floating-point operations is drastically decreased, which makes the constant-time and cache-resistant variants of this algorithm viable and efficient. Finally, we provide some experimental results indicating that comparing to rejection sampling our approach increases the GPV signature rate by a factor 4 to 8 depending on the security parameter. |
doi_str_mv | 10.1109/TC.2018.2807839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8295226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295226</ieee_id><sourcerecordid>2117184874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f469f12bf796420d746c1ac082dc35b3d96eb58c05f6e1e3a01dcf4f1618ae9d3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUwM7BEYk57ZyeODROktCAVgUSYLcexUao0KXYy9N-TqhXTDe9776SPkFuEGSLIeZHPKKCYUQGZYPKMTDBNs1jKlJ-TCYxRLFkCl-QqhA0AcApyQh7zRRE_62CraKWHEGrdRl96u2vq9uchWvpuG70PTV9HfRctuqFsbPTpralD3bXX5MLpJtib052S7-VLkb_G64_VW_60jg0Vso9dwqVDWrpM8oRClSXcoDYgaGVYWrJKclumwkDquEXLNGBlXOKQo9BWVmxK7o-7O9_9Djb0atMNvh1fKoqYoUhElozU_EgZ34XgrVM7X2-13ysEdTCkilwdDKmTobFxd2zU1tp_WlCZUsrZH6bQX8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117184874</pqid></control><display><type>article</type><title>CDT-Based Gaussian Sampling: From Multi to Double Precision</title><source>IEEE Electronic Library Online</source><creator>Aguilar-Melchor, Carlos ; Ricosset, Thomas</creator><creatorcontrib>Aguilar-Melchor, Carlos ; Ricosset, Thomas</creatorcontrib><description>The Rényi divergence is a measure of closeness of two probability distributions which has found several applications over the last years as an alternative to the statistical distance in lattice-based cryptography. A tight bound has recently been presented for the Rényi divergence of distributions that have a bounded relative error. We show that it can be used to bound the precision requirement in Gaussian sampling to the IEEE 754 floating-point standard double precision for usual lattice-based signature parameters by using a modified cumulative distribution table (CDT), which reduces the memory needed by CDT-based algorithms and, makes their constant-time implementation faster and simpler. Then, we apply this approach to a variable-center variant of the CDT algorithm which occasionally requires the online computation of the cumulative distribution function. As a result, the amount of costly floating-point operations is drastically decreased, which makes the constant-time and cache-resistant variants of this algorithm viable and efficient. Finally, we provide some experimental results indicating that comparing to rejection sampling our approach increases the GPV signature rate by a factor 4 to 8 depending on the security parameter.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2018.2807839</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cryptography ; Distribution functions ; Divergence ; Floating point arithmetic ; Gaussian distribution ; Gaussian sampling ; Lattices ; Parameter modification ; Probability distribution ; Sampling ; signature ; Special issues and sections ; Statistical analysis ; trapdoor</subject><ispartof>IEEE transactions on computers, 2018-11, Vol.67 (11), p.1610-1621</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-f469f12bf796420d746c1ac082dc35b3d96eb58c05f6e1e3a01dcf4f1618ae9d3</citedby><cites>FETCH-LOGICAL-c289t-f469f12bf796420d746c1ac082dc35b3d96eb58c05f6e1e3a01dcf4f1618ae9d3</cites><orcidid>0000-0002-8841-1087 ; 0000-0003-2745-884X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295226$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8295226$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aguilar-Melchor, Carlos</creatorcontrib><creatorcontrib>Ricosset, Thomas</creatorcontrib><title>CDT-Based Gaussian Sampling: From Multi to Double Precision</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>The Rényi divergence is a measure of closeness of two probability distributions which has found several applications over the last years as an alternative to the statistical distance in lattice-based cryptography. A tight bound has recently been presented for the Rényi divergence of distributions that have a bounded relative error. We show that it can be used to bound the precision requirement in Gaussian sampling to the IEEE 754 floating-point standard double precision for usual lattice-based signature parameters by using a modified cumulative distribution table (CDT), which reduces the memory needed by CDT-based algorithms and, makes their constant-time implementation faster and simpler. Then, we apply this approach to a variable-center variant of the CDT algorithm which occasionally requires the online computation of the cumulative distribution function. As a result, the amount of costly floating-point operations is drastically decreased, which makes the constant-time and cache-resistant variants of this algorithm viable and efficient. Finally, we provide some experimental results indicating that comparing to rejection sampling our approach increases the GPV signature rate by a factor 4 to 8 depending on the security parameter.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Distribution functions</subject><subject>Divergence</subject><subject>Floating point arithmetic</subject><subject>Gaussian distribution</subject><subject>Gaussian sampling</subject><subject>Lattices</subject><subject>Parameter modification</subject><subject>Probability distribution</subject><subject>Sampling</subject><subject>signature</subject><subject>Special issues and sections</subject><subject>Statistical analysis</subject><subject>trapdoor</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EEqUwM7BEYk57ZyeODROktCAVgUSYLcexUao0KXYy9N-TqhXTDe9776SPkFuEGSLIeZHPKKCYUQGZYPKMTDBNs1jKlJ-TCYxRLFkCl-QqhA0AcApyQh7zRRE_62CraKWHEGrdRl96u2vq9uchWvpuG70PTV9HfRctuqFsbPTpralD3bXX5MLpJtib052S7-VLkb_G64_VW_60jg0Vso9dwqVDWrpM8oRClSXcoDYgaGVYWrJKclumwkDquEXLNGBlXOKQo9BWVmxK7o-7O9_9Djb0atMNvh1fKoqYoUhElozU_EgZ34XgrVM7X2-13ysEdTCkilwdDKmTobFxd2zU1tp_WlCZUsrZH6bQX8c</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Aguilar-Melchor, Carlos</creator><creator>Ricosset, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8841-1087</orcidid><orcidid>https://orcid.org/0000-0003-2745-884X</orcidid></search><sort><creationdate>20181101</creationdate><title>CDT-Based Gaussian Sampling: From Multi to Double Precision</title><author>Aguilar-Melchor, Carlos ; Ricosset, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f469f12bf796420d746c1ac082dc35b3d96eb58c05f6e1e3a01dcf4f1618ae9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Distribution functions</topic><topic>Divergence</topic><topic>Floating point arithmetic</topic><topic>Gaussian distribution</topic><topic>Gaussian sampling</topic><topic>Lattices</topic><topic>Parameter modification</topic><topic>Probability distribution</topic><topic>Sampling</topic><topic>signature</topic><topic>Special issues and sections</topic><topic>Statistical analysis</topic><topic>trapdoor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-Melchor, Carlos</creatorcontrib><creatorcontrib>Ricosset, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aguilar-Melchor, Carlos</au><au>Ricosset, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDT-Based Gaussian Sampling: From Multi to Double Precision</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>67</volume><issue>11</issue><spage>1610</spage><epage>1621</epage><pages>1610-1621</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>The Rényi divergence is a measure of closeness of two probability distributions which has found several applications over the last years as an alternative to the statistical distance in lattice-based cryptography. A tight bound has recently been presented for the Rényi divergence of distributions that have a bounded relative error. We show that it can be used to bound the precision requirement in Gaussian sampling to the IEEE 754 floating-point standard double precision for usual lattice-based signature parameters by using a modified cumulative distribution table (CDT), which reduces the memory needed by CDT-based algorithms and, makes their constant-time implementation faster and simpler. Then, we apply this approach to a variable-center variant of the CDT algorithm which occasionally requires the online computation of the cumulative distribution function. As a result, the amount of costly floating-point operations is drastically decreased, which makes the constant-time and cache-resistant variants of this algorithm viable and efficient. Finally, we provide some experimental results indicating that comparing to rejection sampling our approach increases the GPV signature rate by a factor 4 to 8 depending on the security parameter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2018.2807839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8841-1087</orcidid><orcidid>https://orcid.org/0000-0003-2745-884X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2018-11, Vol.67 (11), p.1610-1621 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_8295226 |
source | IEEE Electronic Library Online |
subjects | Algorithms Cryptography Distribution functions Divergence Floating point arithmetic Gaussian distribution Gaussian sampling Lattices Parameter modification Probability distribution Sampling signature Special issues and sections Statistical analysis trapdoor |
title | CDT-Based Gaussian Sampling: From Multi to Double Precision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDT-Based%20Gaussian%20Sampling:%20From%20Multi%20to%20Double%20Precision&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Aguilar-Melchor,%20Carlos&rft.date=2018-11-01&rft.volume=67&rft.issue=11&rft.spage=1610&rft.epage=1621&rft.pages=1610-1621&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2018.2807839&rft_dat=%3Cproquest_RIE%3E2117184874%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117184874&rft_id=info:pmid/&rft_ieee_id=8295226&rfr_iscdi=true |