Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method

The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2018-06, Vol.14 (6), p.2507-2520
Hauptverfasser: Hossain, M. J., Rafi, Fida Hasan Md, Town, Graham, Lu, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2520
container_issue 6
container_start_page 2507
container_title IEEE transactions on industrial informatics
container_volume 14
creator Hossain, M. J.
Rafi, Fida Hasan Md
Town, Graham
Lu, Junwei
description The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export and point of common coupling (PCC) voltage regulation. A novel dynamic capacity distribution (DCD) method is proposed using the available SVSI capacity after active and reactive power operations to achieve higher capacity neutral compensation at the PCC. The performance of the designed 3P-4L PV-SVSI with the DCD method is compared with a traditional 4L SVSI with fixed unbalanced compensation capacity and a passive unbalance compensator, such as a zig-zag transformer, in PSCAD/EMTDC software. Several case studies, such as balanced and unbalanced load changing effects, are presented with actual residential loads connected to an Australian 3P-4W LV network. A Semikron Semiteach modified inverter and a real-time TMSF28335 DSP microcontroller are also used to provide experimental verification on the improvement of the proposed neutral current compensation with the DCD method. Detailed simulations and experimental studies are presented to verify the robustness and efficacy of the proposed control strategy with the designed 3P-4L PV-SVSI.
doi_str_mv 10.1109/TII.2018.2805913
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8291752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8291752</ieee_id><sourcerecordid>10_1109_TII_2018_2805913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-b36f4ea37343645c490759885aa53eba1b0443973ff0ad66b4681e57006d1c63</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhhujiYjeTbz0DxS_7mu79WhAdMmIJCx4XLrSuRpgZO0O_HshEE_ve3if9_AQ8sxhwjno1zLPJwnwbJJkIDXHGzLiWnAGIOH21KXkDBPAe_IQwi8ApoB6RNaLYRt9M-xt9N3ebGnZ9s6xZWuCo_Nu6FnhfuhyzVbrVU6_fWzp7Lg3O2_p1ByM9fFIZz7E3tfD-YEuXGy7zSO5a8w2uKdrjkk5fy-nn6z4-sinbwWzicLIalSNcAZTFKiEtEJDKnWWSWMkutrwGoRAnWLTgNkoVQuVcSdTALXhVuGYwOXW9l0IvWuqQ-93pj9WHKqzluqkpTprqa5aTsjLBfHOuf95lmieygT_AGtTXVM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method</title><source>IEEE Electronic Library (IEL)</source><creator>Hossain, M. J. ; Rafi, Fida Hasan Md ; Town, Graham ; Lu, Junwei</creator><creatorcontrib>Hossain, M. J. ; Rafi, Fida Hasan Md ; Town, Graham ; Lu, Junwei</creatorcontrib><description>The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export and point of common coupling (PCC) voltage regulation. A novel dynamic capacity distribution (DCD) method is proposed using the available SVSI capacity after active and reactive power operations to achieve higher capacity neutral compensation at the PCC. The performance of the designed 3P-4L PV-SVSI with the DCD method is compared with a traditional 4L SVSI with fixed unbalanced compensation capacity and a passive unbalance compensator, such as a zig-zag transformer, in PSCAD/EMTDC software. Several case studies, such as balanced and unbalanced load changing effects, are presented with actual residential loads connected to an Australian 3P-4W LV network. A Semikron Semiteach modified inverter and a real-time TMSF28335 DSP microcontroller are also used to provide experimental verification on the improvement of the proposed neutral current compensation with the DCD method. Detailed simulations and experimental studies are presented to verify the robustness and efficacy of the proposed control strategy with the designed 3P-4L PV-SVSI.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2805913</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active filters ; Conductors ; Energy storage ; Inverters ; Neutral current ; neutral to ground voltage rise ; photovoltaic ; Power harmonic filters ; residential LV network ; Switches ; three-phase (3P) four-leg (4L) VSI ; Voltage control</subject><ispartof>IEEE transactions on industrial informatics, 2018-06, Vol.14 (6), p.2507-2520</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-b36f4ea37343645c490759885aa53eba1b0443973ff0ad66b4681e57006d1c63</citedby><cites>FETCH-LOGICAL-c263t-b36f4ea37343645c490759885aa53eba1b0443973ff0ad66b4681e57006d1c63</cites><orcidid>0000-0001-7602-3581 ; 0000-0001-7928-2845 ; 0000-0001-5483-4439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8291752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8291752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hossain, M. J.</creatorcontrib><creatorcontrib>Rafi, Fida Hasan Md</creatorcontrib><creatorcontrib>Town, Graham</creatorcontrib><creatorcontrib>Lu, Junwei</creatorcontrib><title>Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export and point of common coupling (PCC) voltage regulation. A novel dynamic capacity distribution (DCD) method is proposed using the available SVSI capacity after active and reactive power operations to achieve higher capacity neutral compensation at the PCC. The performance of the designed 3P-4L PV-SVSI with the DCD method is compared with a traditional 4L SVSI with fixed unbalanced compensation capacity and a passive unbalance compensator, such as a zig-zag transformer, in PSCAD/EMTDC software. Several case studies, such as balanced and unbalanced load changing effects, are presented with actual residential loads connected to an Australian 3P-4W LV network. A Semikron Semiteach modified inverter and a real-time TMSF28335 DSP microcontroller are also used to provide experimental verification on the improvement of the proposed neutral current compensation with the DCD method. Detailed simulations and experimental studies are presented to verify the robustness and efficacy of the proposed control strategy with the designed 3P-4L PV-SVSI.</description><subject>Active filters</subject><subject>Conductors</subject><subject>Energy storage</subject><subject>Inverters</subject><subject>Neutral current</subject><subject>neutral to ground voltage rise</subject><subject>photovoltaic</subject><subject>Power harmonic filters</subject><subject>residential LV network</subject><subject>Switches</subject><subject>three-phase (3P) four-leg (4L) VSI</subject><subject>Voltage control</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwjAYhhujiYjeTbz0DxS_7mu79WhAdMmIJCx4XLrSuRpgZO0O_HshEE_ve3if9_AQ8sxhwjno1zLPJwnwbJJkIDXHGzLiWnAGIOH21KXkDBPAe_IQwi8ApoB6RNaLYRt9M-xt9N3ebGnZ9s6xZWuCo_Nu6FnhfuhyzVbrVU6_fWzp7Lg3O2_p1ByM9fFIZz7E3tfD-YEuXGy7zSO5a8w2uKdrjkk5fy-nn6z4-sinbwWzicLIalSNcAZTFKiEtEJDKnWWSWMkutrwGoRAnWLTgNkoVQuVcSdTALXhVuGYwOXW9l0IvWuqQ-93pj9WHKqzluqkpTprqa5aTsjLBfHOuf95lmieygT_AGtTXVM</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Hossain, M. J.</creator><creator>Rafi, Fida Hasan Md</creator><creator>Town, Graham</creator><creator>Lu, Junwei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7602-3581</orcidid><orcidid>https://orcid.org/0000-0001-7928-2845</orcidid><orcidid>https://orcid.org/0000-0001-5483-4439</orcidid></search><sort><creationdate>201806</creationdate><title>Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method</title><author>Hossain, M. J. ; Rafi, Fida Hasan Md ; Town, Graham ; Lu, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-b36f4ea37343645c490759885aa53eba1b0443973ff0ad66b4681e57006d1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active filters</topic><topic>Conductors</topic><topic>Energy storage</topic><topic>Inverters</topic><topic>Neutral current</topic><topic>neutral to ground voltage rise</topic><topic>photovoltaic</topic><topic>Power harmonic filters</topic><topic>residential LV network</topic><topic>Switches</topic><topic>three-phase (3P) four-leg (4L) VSI</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Hossain, M. J.</creatorcontrib><creatorcontrib>Rafi, Fida Hasan Md</creatorcontrib><creatorcontrib>Town, Graham</creatorcontrib><creatorcontrib>Lu, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hossain, M. J.</au><au>Rafi, Fida Hasan Md</au><au>Town, Graham</au><au>Lu, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-06</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>2507</spage><epage>2520</epage><pages>2507-2520</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The unequal single-phase load distribution in three-phase (3P) four-wire (4W) low-voltage (LV) networks can cause significant neutral current and neutral to ground voltage rise problems at both customer and distribution transformer terminals. High neutral current can overload the neutral conductors and can cause electrical safety concerns to the users. To mitigate the high neutral current problem in an unbalanced residential LV network, a multifunctional 3P four-leg (4L) rooftop photovoltaic (PV) smart voltage source inverter (SVSI) is designed with improved active neutral current compensation along with active power export and point of common coupling (PCC) voltage regulation. A novel dynamic capacity distribution (DCD) method is proposed using the available SVSI capacity after active and reactive power operations to achieve higher capacity neutral compensation at the PCC. The performance of the designed 3P-4L PV-SVSI with the DCD method is compared with a traditional 4L SVSI with fixed unbalanced compensation capacity and a passive unbalance compensator, such as a zig-zag transformer, in PSCAD/EMTDC software. Several case studies, such as balanced and unbalanced load changing effects, are presented with actual residential loads connected to an Australian 3P-4W LV network. A Semikron Semiteach modified inverter and a real-time TMSF28335 DSP microcontroller are also used to provide experimental verification on the improvement of the proposed neutral current compensation with the DCD method. Detailed simulations and experimental studies are presented to verify the robustness and efficacy of the proposed control strategy with the designed 3P-4L PV-SVSI.</abstract><pub>IEEE</pub><doi>10.1109/TII.2018.2805913</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7602-3581</orcidid><orcidid>https://orcid.org/0000-0001-7928-2845</orcidid><orcidid>https://orcid.org/0000-0001-5483-4439</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-06, Vol.14 (6), p.2507-2520
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_8291752
source IEEE Electronic Library (IEL)
subjects Active filters
Conductors
Energy storage
Inverters
Neutral current
neutral to ground voltage rise
photovoltaic
Power harmonic filters
residential LV network
Switches
three-phase (3P) four-leg (4L) VSI
Voltage control
title Multifunctional Three-Phase Four-Leg PV-SVSI With Dynamic Capacity Distribution Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Three-Phase%20Four-Leg%20PV-SVSI%20With%20Dynamic%20Capacity%20Distribution%20Method&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hossain,%20M.%20J.&rft.date=2018-06&rft.volume=14&rft.issue=6&rft.spage=2507&rft.epage=2520&rft.pages=2507-2520&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2805913&rft_dat=%3Ccrossref_RIE%3E10_1109_TII_2018_2805913%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8291752&rfr_iscdi=true