Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data

Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2019-05, Vol.10 (3), p.2593-2602
Hauptverfasser: Wang, Yi, Chen, Qixin, Gan, Dahua, Yang, Jingwei, Kirschen, Daniel S., Kang, Chongqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2602
container_issue 3
container_start_page 2593
container_title IEEE transactions on smart grid
container_volume 10
creator Wang, Yi
Chen, Qixin
Gan, Dahua
Yang, Jingwei
Kirschen, Daniel S.
Kang, Chongqing
description Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.
doi_str_mv 10.1109/TSG.2018.2805723
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8291011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8291011</ieee_id><sourcerecordid>2214420821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-64ba2fcf270812484b41b7b2548248ed1c4b6e6eafb97f84fd1e264eb8089eb93</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EElXpjsQSiTnFZ7uJPUJLS6UihhZWy07OxRWJg5MO_HtSpeotd0967-70EXIPdApA1dNuu5oyCnLKJJ3ljF-RESihUk4zuL7MM35LJm17oH1xzjOmRuRrgdgkGzSx9vU-fTEtlsk2FD6kC6zCPprm2xfJunYhVqbzoU7WJdadd74Y5DKGKtlWJnbJO3YYk4XpzB25ceanxcm5j8nn8nU3f0s3H6v1_HmTFpzLLs2ENcwVjuVUAhNSWAE2t2wmZK-whELYDDM0zqrcSeFKQJYJtJJKhVbxMXkc9jYx_B6x7fQhHGPdn9SMgRCMSga9iw6uIoa2jeh0E33_8Z8Gqk8AdQ9QnwDqM8A-8jBEPCJe7JIpoAD8H7bRa1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214420821</pqid></control><display><type>article</type><title>Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yi ; Chen, Qixin ; Gan, Dahua ; Yang, Jingwei ; Kirschen, Daniel S. ; Kang, Chongqing</creator><creatorcontrib>Wang, Yi ; Chen, Qixin ; Gan, Dahua ; Yang, Jingwei ; Kirschen, Daniel S. ; Kang, Chongqing</creatorcontrib><description>Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2018.2805723</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; big data ; classification ; Consumers ; Convolutional neural network (CNN) ; Data mining ; Data visualization ; Deep learning ; Demographics ; Encoding ; Feature extraction ; Machine learning ; Measuring instruments ; Neural networks ; smart meter ; Smart meters ; socio-demographic information ; Sociodemographics ; support vector machine (SVM) ; Support vector machines ; Training ; Utilities</subject><ispartof>IEEE transactions on smart grid, 2019-05, Vol.10 (3), p.2593-2602</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-64ba2fcf270812484b41b7b2548248ed1c4b6e6eafb97f84fd1e264eb8089eb93</citedby><cites>FETCH-LOGICAL-c338t-64ba2fcf270812484b41b7b2548248ed1c4b6e6eafb97f84fd1e264eb8089eb93</cites><orcidid>0000-0001-6725-1953 ; 0000-0003-1143-0666 ; 0000-0002-6471-0285 ; 0000-0001-8895-4682 ; 0000-0002-3733-8641 ; 0000-0003-2296-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8291011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8291011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Gan, Dahua</creatorcontrib><creatorcontrib>Yang, Jingwei</creatorcontrib><creatorcontrib>Kirschen, Daniel S.</creatorcontrib><creatorcontrib>Kang, Chongqing</creatorcontrib><title>Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.</description><subject>Artificial neural networks</subject><subject>big data</subject><subject>classification</subject><subject>Consumers</subject><subject>Convolutional neural network (CNN)</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Deep learning</subject><subject>Demographics</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Measuring instruments</subject><subject>Neural networks</subject><subject>smart meter</subject><subject>Smart meters</subject><subject>socio-demographic information</subject><subject>Sociodemographics</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Utilities</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EElXpjsQSiTnFZ7uJPUJLS6UihhZWy07OxRWJg5MO_HtSpeotd0967-70EXIPdApA1dNuu5oyCnLKJJ3ljF-RESihUk4zuL7MM35LJm17oH1xzjOmRuRrgdgkGzSx9vU-fTEtlsk2FD6kC6zCPprm2xfJunYhVqbzoU7WJdadd74Y5DKGKtlWJnbJO3YYk4XpzB25ceanxcm5j8nn8nU3f0s3H6v1_HmTFpzLLs2ENcwVjuVUAhNSWAE2t2wmZK-whELYDDM0zqrcSeFKQJYJtJJKhVbxMXkc9jYx_B6x7fQhHGPdn9SMgRCMSga9iw6uIoa2jeh0E33_8Z8Gqk8AdQ9QnwDqM8A-8jBEPCJe7JIpoAD8H7bRa1s</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Wang, Yi</creator><creator>Chen, Qixin</creator><creator>Gan, Dahua</creator><creator>Yang, Jingwei</creator><creator>Kirschen, Daniel S.</creator><creator>Kang, Chongqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6725-1953</orcidid><orcidid>https://orcid.org/0000-0003-1143-0666</orcidid><orcidid>https://orcid.org/0000-0002-6471-0285</orcidid><orcidid>https://orcid.org/0000-0001-8895-4682</orcidid><orcidid>https://orcid.org/0000-0002-3733-8641</orcidid><orcidid>https://orcid.org/0000-0003-2296-8250</orcidid></search><sort><creationdate>20190501</creationdate><title>Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data</title><author>Wang, Yi ; Chen, Qixin ; Gan, Dahua ; Yang, Jingwei ; Kirschen, Daniel S. ; Kang, Chongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-64ba2fcf270812484b41b7b2548248ed1c4b6e6eafb97f84fd1e264eb8089eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>big data</topic><topic>classification</topic><topic>Consumers</topic><topic>Convolutional neural network (CNN)</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Deep learning</topic><topic>Demographics</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Measuring instruments</topic><topic>Neural networks</topic><topic>smart meter</topic><topic>Smart meters</topic><topic>socio-demographic information</topic><topic>Sociodemographics</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Gan, Dahua</creatorcontrib><creatorcontrib>Yang, Jingwei</creatorcontrib><creatorcontrib>Kirschen, Daniel S.</creatorcontrib><creatorcontrib>Kang, Chongqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yi</au><au>Chen, Qixin</au><au>Gan, Dahua</au><au>Yang, Jingwei</au><au>Kirschen, Daniel S.</au><au>Kang, Chongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>2593</spage><epage>2602</epage><pages>2593-2602</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2018.2805723</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6725-1953</orcidid><orcidid>https://orcid.org/0000-0003-1143-0666</orcidid><orcidid>https://orcid.org/0000-0002-6471-0285</orcidid><orcidid>https://orcid.org/0000-0001-8895-4682</orcidid><orcidid>https://orcid.org/0000-0002-3733-8641</orcidid><orcidid>https://orcid.org/0000-0003-2296-8250</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2019-05, Vol.10 (3), p.2593-2602
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_8291011
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
big data
classification
Consumers
Convolutional neural network (CNN)
Data mining
Data visualization
Deep learning
Demographics
Encoding
Feature extraction
Machine learning
Measuring instruments
Neural networks
smart meter
Smart meters
socio-demographic information
Sociodemographics
support vector machine (SVM)
Support vector machines
Training
Utilities
title Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Socio-Demographic%20Information%20Identification%20From%20Smart%20Meter%20Data&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wang,%20Yi&rft.date=2019-05-01&rft.volume=10&rft.issue=3&rft.spage=2593&rft.epage=2602&rft.pages=2593-2602&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2018.2805723&rft_dat=%3Cproquest_RIE%3E2214420821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214420821&rft_id=info:pmid/&rft_ieee_id=8291011&rfr_iscdi=true