Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter

500 kV saturated iron core superconductive fault current limiter (SFCL) has been built and tested successfully. The superconducting magnet consists of 88 high-temperature superconducting (HTS) double pancake coils with an inner diameter of 1940 mm and an outer diameter of 2040 mm. Double pancake coi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2018-04, Vol.28 (3), p.1-5
Hauptverfasser: Liang, Chen, Li, Chao, Zhang, Pingxiang, Song, Meng, Ma, Tao, Zhou, Tao, Ge, Zhengfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 28
creator Liang, Chen
Li, Chao
Zhang, Pingxiang
Song, Meng
Ma, Tao
Zhou, Tao
Ge, Zhengfu
description 500 kV saturated iron core superconductive fault current limiter (SFCL) has been built and tested successfully. The superconducting magnet consists of 88 high-temperature superconducting (HTS) double pancake coils with an inner diameter of 1940 mm and an outer diameter of 2040 mm. Double pancake coil plays an important role in 500 kV SFCL, the structure and the winding process have great influence on current carrying capability and reliability of the coil. In this paper, the key technology of winding process of the world's largest HTS coil was introduced, which included bending effect on critical current measurement of HTS tapes, insulation treatment of pancake coil and coil winding process. The V-I curve of the HTS coil was also investigated under the condition of liquid nitrogen in the self-magnetic field. The experimental results show that not only the pancake coil but also the superconducting magnet has good properties and the process is reliable and suitable for manufacturing 500 kV SFCL. The study will not only provide important references for large HTS coils fabrication but also accumulate experience and data for other similar engineering practices.
doi_str_mv 10.1109/TASC.2018.2805722
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8290839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8290839</ieee_id><sourcerecordid>10_1109_TASC_2018_2805722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5d05cbcaed8b1a627428b18991fd7985baab20c4d0a962213f7a9a39817dd52c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHzJH-i897ZZk8dRNicMfNhUfCppks5o1460Fffv7djw6R645xwOH2P3CBNEUI-b2TqbEKCckASREl2wEQohIxIoLgcNAiNJFF-zm7b9AsBEJmLEPt59bX295RtnPuumarYHrmvL5797F_zO1Z2u-Lrr7YE3NRcA_PuNr_vhaZra9qbzP44vdF91POtDGPx85Xe-c-GWXZW6at3d-Y7Z62K-yZbR6uXpOZutIkNT0UXCgjCF0c7KAvWU0oQGIZXC0qZKikLrgsAkFrSaEmFcplrpWElMrRVk4jHDU68JTdsGV-b7YbgOhxwhP7LJj2zyI5v8zGbIPJwy3jn375ekQMYq_gO5N2C1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Chen ; Li, Chao ; Zhang, Pingxiang ; Song, Meng ; Ma, Tao ; Zhou, Tao ; Ge, Zhengfu</creator><creatorcontrib>Liang, Chen ; Li, Chao ; Zhang, Pingxiang ; Song, Meng ; Ma, Tao ; Zhou, Tao ; Ge, Zhengfu</creatorcontrib><description>500 kV saturated iron core superconductive fault current limiter (SFCL) has been built and tested successfully. The superconducting magnet consists of 88 high-temperature superconducting (HTS) double pancake coils with an inner diameter of 1940 mm and an outer diameter of 2040 mm. Double pancake coil plays an important role in 500 kV SFCL, the structure and the winding process have great influence on current carrying capability and reliability of the coil. In this paper, the key technology of winding process of the world's largest HTS coil was introduced, which included bending effect on critical current measurement of HTS tapes, insulation treatment of pancake coil and coil winding process. The V-I curve of the HTS coil was also investigated under the condition of liquid nitrogen in the self-magnetic field. The experimental results show that not only the pancake coil but also the superconducting magnet has good properties and the process is reliable and suitable for manufacturing 500 kV SFCL. The study will not only provide important references for large HTS coils fabrication but also accumulate experience and data for other similar engineering practices.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2805722</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>coil winding ; Coils ; Critical current density (superconductivity) ; HTS coils ; Superconducting fault current limiter ; superconducting magnet ; Superconducting magnets ; Windings ; Wires ; Yttrium barium copper oxide</subject><ispartof>IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-5d05cbcaed8b1a627428b18991fd7985baab20c4d0a962213f7a9a39817dd52c3</citedby><cites>FETCH-LOGICAL-c265t-5d05cbcaed8b1a627428b18991fd7985baab20c4d0a962213f7a9a39817dd52c3</cites><orcidid>0000-0001-7510-5569 ; 0000-0003-2672-4237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8290839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8290839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Zhang, Pingxiang</creatorcontrib><creatorcontrib>Song, Meng</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ge, Zhengfu</creatorcontrib><title>Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>500 kV saturated iron core superconductive fault current limiter (SFCL) has been built and tested successfully. The superconducting magnet consists of 88 high-temperature superconducting (HTS) double pancake coils with an inner diameter of 1940 mm and an outer diameter of 2040 mm. Double pancake coil plays an important role in 500 kV SFCL, the structure and the winding process have great influence on current carrying capability and reliability of the coil. In this paper, the key technology of winding process of the world's largest HTS coil was introduced, which included bending effect on critical current measurement of HTS tapes, insulation treatment of pancake coil and coil winding process. The V-I curve of the HTS coil was also investigated under the condition of liquid nitrogen in the self-magnetic field. The experimental results show that not only the pancake coil but also the superconducting magnet has good properties and the process is reliable and suitable for manufacturing 500 kV SFCL. The study will not only provide important references for large HTS coils fabrication but also accumulate experience and data for other similar engineering practices.</description><subject>coil winding</subject><subject>Coils</subject><subject>Critical current density (superconductivity)</subject><subject>HTS coils</subject><subject>Superconducting fault current limiter</subject><subject>superconducting magnet</subject><subject>Superconducting magnets</subject><subject>Windings</subject><subject>Wires</subject><subject>Yttrium barium copper oxide</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHzJH-i897ZZk8dRNicMfNhUfCppks5o1460Fffv7djw6R645xwOH2P3CBNEUI-b2TqbEKCckASREl2wEQohIxIoLgcNAiNJFF-zm7b9AsBEJmLEPt59bX295RtnPuumarYHrmvL5797F_zO1Z2u-Lrr7YE3NRcA_PuNr_vhaZra9qbzP44vdF91POtDGPx85Xe-c-GWXZW6at3d-Y7Z62K-yZbR6uXpOZutIkNT0UXCgjCF0c7KAvWU0oQGIZXC0qZKikLrgsAkFrSaEmFcplrpWElMrRVk4jHDU68JTdsGV-b7YbgOhxwhP7LJj2zyI5v8zGbIPJwy3jn375ekQMYq_gO5N2C1</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Liang, Chen</creator><creator>Li, Chao</creator><creator>Zhang, Pingxiang</creator><creator>Song, Meng</creator><creator>Ma, Tao</creator><creator>Zhou, Tao</creator><creator>Ge, Zhengfu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7510-5569</orcidid><orcidid>https://orcid.org/0000-0003-2672-4237</orcidid></search><sort><creationdate>201804</creationdate><title>Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter</title><author>Liang, Chen ; Li, Chao ; Zhang, Pingxiang ; Song, Meng ; Ma, Tao ; Zhou, Tao ; Ge, Zhengfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5d05cbcaed8b1a627428b18991fd7985baab20c4d0a962213f7a9a39817dd52c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>coil winding</topic><topic>Coils</topic><topic>Critical current density (superconductivity)</topic><topic>HTS coils</topic><topic>Superconducting fault current limiter</topic><topic>superconducting magnet</topic><topic>Superconducting magnets</topic><topic>Windings</topic><topic>Wires</topic><topic>Yttrium barium copper oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Zhang, Pingxiang</creatorcontrib><creatorcontrib>Song, Meng</creatorcontrib><creatorcontrib>Ma, Tao</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Ge, Zhengfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Chen</au><au>Li, Chao</au><au>Zhang, Pingxiang</au><au>Song, Meng</au><au>Ma, Tao</au><au>Zhou, Tao</au><au>Ge, Zhengfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-04</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>500 kV saturated iron core superconductive fault current limiter (SFCL) has been built and tested successfully. The superconducting magnet consists of 88 high-temperature superconducting (HTS) double pancake coils with an inner diameter of 1940 mm and an outer diameter of 2040 mm. Double pancake coil plays an important role in 500 kV SFCL, the structure and the winding process have great influence on current carrying capability and reliability of the coil. In this paper, the key technology of winding process of the world's largest HTS coil was introduced, which included bending effect on critical current measurement of HTS tapes, insulation treatment of pancake coil and coil winding process. The V-I curve of the HTS coil was also investigated under the condition of liquid nitrogen in the self-magnetic field. The experimental results show that not only the pancake coil but also the superconducting magnet has good properties and the process is reliable and suitable for manufacturing 500 kV SFCL. The study will not only provide important references for large HTS coils fabrication but also accumulate experience and data for other similar engineering practices.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2018.2805722</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7510-5569</orcidid><orcidid>https://orcid.org/0000-0003-2672-4237</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_8290839
source IEEE Electronic Library (IEL)
subjects coil winding
Coils
Critical current density (superconductivity)
HTS coils
Superconducting fault current limiter
superconducting magnet
Superconducting magnets
Windings
Wires
Yttrium barium copper oxide
title Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Winding%20Technology%20and%20Experimental%20Study%20on%20500%20kV%20Superconductive%20Fault%20Current%20Limiter&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Liang,%20Chen&rft.date=2018-04&rft.volume=28&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2805722&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2018_2805722%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8290839&rfr_iscdi=true