A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems

In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.15457-15467
Hauptverfasser: Niu, Xiaoguang, Ye, Qiongzan, Zhang, Yihao, Ye, Dengpan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15467
container_issue
container_start_page 15457
container_title IEEE access
container_volume 6
creator Niu, Xiaoguang
Ye, Qiongzan
Zhang, Yihao
Ye, Dengpan
description In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.
doi_str_mv 10.1109/ACCESS.2018.2803129
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8283702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283702</ieee_id><doaj_id>oai_doaj_org_article_905fba9fcaf54542a50a6b9b41b1b03e</doaj_id><sourcerecordid>2455878399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1P1Mdo-lVFtoUYiel9lkolvabN1NC_33pqYU5zLD430MvCR5pGRMKdHPk-l0VpZjRqgaM0U4ZfoqGTGa64xLnl__u2-ThxjXpB_VQ7IYJfNJ-h7cAapj9h4wYji49itd1Nh2rnEVdM636Qqrb2hd3KaND-nKW7fBtMQ2nrjlMXa4jffJTQObiA_nfZd8vsw-pvNs-fa6mE6WWSWI6rKaE6gJiDpnKGqhVF5JVFoLK6zkhbbUogRuWV4rJLLRpEDMEahlQDhX_C5ZDL61h7XZBbeFcDQenPkDfPgyEDpXbdDoXm9BNxU0UkjBQBLIrbaC9imEY-_1NHjtgv_ZY-zM2u9D279vmJBSFYpr3bP4wKqCjzFgc0mlxJwaMEMD5tSAOTfQqx4HlUPEi0IxxQvC-C_8aIF7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455878399</pqid></control><display><type>article</type><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><source>Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</creator><creatorcontrib>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</creatorcontrib><description>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2803129</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data privacy ; differential privacy ; identification ; Mobile communication ; Mobile sensing system ; Neural networks ; Privacy ; privacy preserving ; Sensitivity ; Sensors ; Task analysis ; Trustworthiness ; trustworthy</subject><ispartof>IEEE access, 2018-01, Vol.6, p.15457-15467</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</citedby><cites>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</cites><orcidid>0000-0003-4252-3291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283702$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Qiongzan</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</description><subject>Data models</subject><subject>Data privacy</subject><subject>differential privacy</subject><subject>identification</subject><subject>Mobile communication</subject><subject>Mobile sensing system</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Trustworthiness</subject><subject>trustworthy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1P1Mdo-lVFtoUYiel9lkolvabN1NC_33pqYU5zLD430MvCR5pGRMKdHPk-l0VpZjRqgaM0U4ZfoqGTGa64xLnl__u2-ThxjXpB_VQ7IYJfNJ-h7cAapj9h4wYji49itd1Nh2rnEVdM636Qqrb2hd3KaND-nKW7fBtMQ2nrjlMXa4jffJTQObiA_nfZd8vsw-pvNs-fa6mE6WWSWI6rKaE6gJiDpnKGqhVF5JVFoLK6zkhbbUogRuWV4rJLLRpEDMEahlQDhX_C5ZDL61h7XZBbeFcDQenPkDfPgyEDpXbdDoXm9BNxU0UkjBQBLIrbaC9imEY-_1NHjtgv_ZY-zM2u9D279vmJBSFYpr3bP4wKqCjzFgc0mlxJwaMEMD5tSAOTfQqx4HlUPEi0IxxQvC-C_8aIF7</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Niu, Xiaoguang</creator><creator>Ye, Qiongzan</creator><creator>Zhang, Yihao</creator><creator>Ye, Dengpan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4252-3291</orcidid></search><sort><creationdate>20180101</creationdate><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><author>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data models</topic><topic>Data privacy</topic><topic>differential privacy</topic><topic>identification</topic><topic>Mobile communication</topic><topic>Mobile sensing system</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Trustworthiness</topic><topic>trustworthy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Qiongzan</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Xiaoguang</au><au>Ye, Qiongzan</au><au>Zhang, Yihao</au><au>Ye, Dengpan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>15457</spage><epage>15467</epage><pages>15457-15467</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2803129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4252-3291</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.15457-15467
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8283702
source Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Data models
Data privacy
differential privacy
identification
Mobile communication
Mobile sensing system
Neural networks
Privacy
privacy preserving
Sensitivity
Sensors
Task analysis
Trustworthiness
trustworthy
title A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Identification%20Mechanism%20for%20Mobile%20Sensing%20Systems&rft.jtitle=IEEE%20access&rft.au=Niu,%20Xiaoguang&rft.date=2018-01-01&rft.volume=6&rft.spage=15457&rft.epage=15467&rft.pages=15457-15467&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2803129&rft_dat=%3Cproquest_ieee_%3E2455878399%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455878399&rft_id=info:pmid/&rft_ieee_id=8283702&rft_doaj_id=oai_doaj_org_article_905fba9fcaf54542a50a6b9b41b1b03e&rfr_iscdi=true