A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems
In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mec...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.15457-15467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15467 |
---|---|
container_issue | |
container_start_page | 15457 |
container_title | IEEE access |
container_volume | 6 |
creator | Niu, Xiaoguang Ye, Qiongzan Zhang, Yihao Ye, Dengpan |
description | In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems. |
doi_str_mv | 10.1109/ACCESS.2018.2803129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8283702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283702</ieee_id><doaj_id>oai_doaj_org_article_905fba9fcaf54542a50a6b9b41b1b03e</doaj_id><sourcerecordid>2455878399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1P1Mdo-lVFtoUYiel9lkolvabN1NC_33pqYU5zLD430MvCR5pGRMKdHPk-l0VpZjRqgaM0U4ZfoqGTGa64xLnl__u2-ThxjXpB_VQ7IYJfNJ-h7cAapj9h4wYji49itd1Nh2rnEVdM636Qqrb2hd3KaND-nKW7fBtMQ2nrjlMXa4jffJTQObiA_nfZd8vsw-pvNs-fa6mE6WWSWI6rKaE6gJiDpnKGqhVF5JVFoLK6zkhbbUogRuWV4rJLLRpEDMEahlQDhX_C5ZDL61h7XZBbeFcDQenPkDfPgyEDpXbdDoXm9BNxU0UkjBQBLIrbaC9imEY-_1NHjtgv_ZY-zM2u9D279vmJBSFYpr3bP4wKqCjzFgc0mlxJwaMEMD5tSAOTfQqx4HlUPEi0IxxQvC-C_8aIF7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455878399</pqid></control><display><type>article</type><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><source>Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</creator><creatorcontrib>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</creatorcontrib><description>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2803129</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Data privacy ; differential privacy ; identification ; Mobile communication ; Mobile sensing system ; Neural networks ; Privacy ; privacy preserving ; Sensitivity ; Sensors ; Task analysis ; Trustworthiness ; trustworthy</subject><ispartof>IEEE access, 2018-01, Vol.6, p.15457-15467</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</citedby><cites>FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</cites><orcidid>0000-0003-4252-3291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283702$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Qiongzan</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</description><subject>Data models</subject><subject>Data privacy</subject><subject>differential privacy</subject><subject>identification</subject><subject>Mobile communication</subject><subject>Mobile sensing system</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Trustworthiness</subject><subject>trustworthy</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1P1Mdo-lVFtoUYiel9lkolvabN1NC_33pqYU5zLD430MvCR5pGRMKdHPk-l0VpZjRqgaM0U4ZfoqGTGa64xLnl__u2-ThxjXpB_VQ7IYJfNJ-h7cAapj9h4wYji49itd1Nh2rnEVdM636Qqrb2hd3KaND-nKW7fBtMQ2nrjlMXa4jffJTQObiA_nfZd8vsw-pvNs-fa6mE6WWSWI6rKaE6gJiDpnKGqhVF5JVFoLK6zkhbbUogRuWV4rJLLRpEDMEahlQDhX_C5ZDL61h7XZBbeFcDQenPkDfPgyEDpXbdDoXm9BNxU0UkjBQBLIrbaC9imEY-_1NHjtgv_ZY-zM2u9D279vmJBSFYpr3bP4wKqCjzFgc0mlxJwaMEMD5tSAOTfQqx4HlUPEi0IxxQvC-C_8aIF7</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Niu, Xiaoguang</creator><creator>Ye, Qiongzan</creator><creator>Zhang, Yihao</creator><creator>Ye, Dengpan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4252-3291</orcidid></search><sort><creationdate>20180101</creationdate><title>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</title><author>Niu, Xiaoguang ; Ye, Qiongzan ; Zhang, Yihao ; Ye, Dengpan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d30ad0a4d62e4d4886c5e8994b4b5379b1be5a3b26d8e05f907ee6ea1b2a03383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data models</topic><topic>Data privacy</topic><topic>differential privacy</topic><topic>identification</topic><topic>Mobile communication</topic><topic>Mobile sensing system</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Trustworthiness</topic><topic>trustworthy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Xiaoguang</creatorcontrib><creatorcontrib>Ye, Qiongzan</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Ye, Dengpan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Xiaoguang</au><au>Ye, Qiongzan</au><au>Zhang, Yihao</au><au>Ye, Dengpan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>15457</spage><epage>15467</epage><pages>15457-15467</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the applications for mobile sensing, the trustworthy of sensed data should be put on the first place. The identification of participants can ensure data trustworthy but will reveal the privacy of the participants to a great extent. In this paper, we propose a privacy-preserving identification mechanism for mobile sensing systems to select sensed data dynamically to protect participant's sensitive information. It solves the contradiction between "privacy protection"and "identification". It divides data privacy sensitivity of the data sensed from the task that participants attended, allowing participants to define their own privacy sensitivity, then selects sensed data dynamically and uses differential privacy to process the data with high privacy sensitivity. It can not only protect participants' privacy, but also identify participants' IDs. In order to achieve identification, a two-layer neural network model is used to train and learn the participant's style of action and generate an identity feature database. The experimental results show that the proposed mechanism can provide a trustworthy platform for mobile sensing systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2803129</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4252-3291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.15457-15467 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8283702 |
source | Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Data models Data privacy differential privacy identification Mobile communication Mobile sensing system Neural networks Privacy privacy preserving Sensitivity Sensors Task analysis Trustworthiness trustworthy |
title | A Privacy-Preserving Identification Mechanism for Mobile Sensing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Identification%20Mechanism%20for%20Mobile%20Sensing%20Systems&rft.jtitle=IEEE%20access&rft.au=Niu,%20Xiaoguang&rft.date=2018-01-01&rft.volume=6&rft.spage=15457&rft.epage=15467&rft.pages=15457-15467&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2803129&rft_dat=%3Cproquest_ieee_%3E2455878399%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455878399&rft_id=info:pmid/&rft_ieee_id=8283702&rft_doaj_id=oai_doaj_org_article_905fba9fcaf54542a50a6b9b41b1b03e&rfr_iscdi=true |