Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN

Cloud radio access network (CRAN) architecture is proposed to save energy, facilitate coordination between radio units, and achieve scalable solutions to improve radio network's performance. However, stringent delay and bandwidth constraints are incurred by fronthaul in CRAN [the network segmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on green communications and networking 2018-06, Vol.2 (2), p.545-555
Hauptverfasser: Alabbasi, Abdulrahman, Wang, Xinbo, Cavdar, Cicek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 2
container_start_page 545
container_title IEEE transactions on green communications and networking
container_volume 2
creator Alabbasi, Abdulrahman
Wang, Xinbo
Cavdar, Cicek
description Cloud radio access network (CRAN) architecture is proposed to save energy, facilitate coordination between radio units, and achieve scalable solutions to improve radio network's performance. However, stringent delay and bandwidth constraints are incurred by fronthaul in CRAN [the network segment connecting RUs and digital units (DUs)]. Therefore, we propose a hybrid cloud radio access network architecture, where a DU's functionalities can be virtualized and split at several conceivable points. Each split option results in two-level deployment of the processing functions (central site level and remote site level) connected by a transport network, called midhaul. We study the interplay of energy efficiency and midhaul bandwidth consumption under optimal processing allocation. We jointly minimize the power and midhaul bandwidth consumption in H-CRAN, while satisfying network constraints, i.e., processing and midhaul bandwidth capacity. We enable power saving functionalities by shutting down different network components. The proposed model is formulated as a constraint programming problem. The proposed solution shows that 42 percentile of midhaul bandwidth savings can be achieved compared to the fully centralized CRAN; and 35 percentile of power consumption saving can be achieved compared to the case where all the network functions are distributed at the edge.
doi_str_mv 10.1109/TGCN.2018.2802419
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8280524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8280524</ieee_id><sourcerecordid>2299162820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-590d18ee492986d4c6574f0a407b9861cc79f180592c0254a0cffd80c398ffa23</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxejiQT5AMaXJj4Pr1032kecCCYIxqCJT83oOijCOtstBD-9xRniy93l7nf_3P2D4BpDH2Pgd4txOusTwKxPGBCK-VnQIXQQhYQCnP-rL4OecxsAIDzGCY86wce8qvUu26IXa6RyTpcrNNxujcxqbUpUG_SsS73T3wqNSmVXB5SVObr3Ya_zeo1SU7pmV_3CukSTw9LqHKWvw9lVcFFkW6d6f7kbvD2OFukknM7HT-lwGsoownUYc8gxU4pywlmSU5nEA1pARmGw9A0s5YAXmEHMiQQS0wxkUeQMZMRZUWQk6gZhq-v2qmqWorL-H3sQJtPiQb8PhbEr8VmvRYQp4dzzty1fWfPVKFeLjWls6U8UxM9xQhgBT-GWktY4Z1Vx0sUgjqaLo-niaLr4M93v3LQ7Wil14pkfx4RGP1dIfGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299162820</pqid></control><display><type>article</type><title>Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN</title><source>IEEE Xplore</source><creator>Alabbasi, Abdulrahman ; Wang, Xinbo ; Cavdar, Cicek</creator><creatorcontrib>Alabbasi, Abdulrahman ; Wang, Xinbo ; Cavdar, Cicek</creatorcontrib><description>Cloud radio access network (CRAN) architecture is proposed to save energy, facilitate coordination between radio units, and achieve scalable solutions to improve radio network's performance. However, stringent delay and bandwidth constraints are incurred by fronthaul in CRAN [the network segment connecting RUs and digital units (DUs)]. Therefore, we propose a hybrid cloud radio access network architecture, where a DU's functionalities can be virtualized and split at several conceivable points. Each split option results in two-level deployment of the processing functions (central site level and remote site level) connected by a transport network, called midhaul. We study the interplay of energy efficiency and midhaul bandwidth consumption under optimal processing allocation. We jointly minimize the power and midhaul bandwidth consumption in H-CRAN, while satisfying network constraints, i.e., processing and midhaul bandwidth capacity. We enable power saving functionalities by shutting down different network components. The proposed model is formulated as a constraint programming problem. The proposed solution shows that 42 percentile of midhaul bandwidth savings can be achieved compared to the fully centralized CRAN; and 35 percentile of power consumption saving can be achieved compared to the case where all the network functions are distributed at the edge.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2018.2802419</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bandwidth ; Bandwidth constraint ; Bandwidth consumption ; Bandwidths ; Base bands ; Baseband ; Cloud computing ; Cloud radio access networks ; cloud RAN ; Computer architecture ; Computer programming ; Constraint modelling ; Constraint programming ; Constraint theory ; Distributed computer systems ; Electric power utilization ; Energy conservation ; Energy consumption ; Energy efficiency ; Microprocessor chips ; Microprocessors ; network architecture ; network function split ; Power consumption ; Power consumption savings ; Power demand ; Power demands ; Radio ; Radio access networks ; Shutdowns ; Transportation networks ; virtualized cloud RAN</subject><ispartof>IEEE transactions on green communications and networking, 2018-06, Vol.2 (2), p.545-555</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-590d18ee492986d4c6574f0a407b9861cc79f180592c0254a0cffd80c398ffa23</citedby><cites>FETCH-LOGICAL-c331t-590d18ee492986d4c6574f0a407b9861cc79f180592c0254a0cffd80c398ffa23</cites><orcidid>0000-0002-6614-5208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8280524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8280524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-314299$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Alabbasi, Abdulrahman</creatorcontrib><creatorcontrib>Wang, Xinbo</creatorcontrib><creatorcontrib>Cavdar, Cicek</creatorcontrib><title>Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>Cloud radio access network (CRAN) architecture is proposed to save energy, facilitate coordination between radio units, and achieve scalable solutions to improve radio network's performance. However, stringent delay and bandwidth constraints are incurred by fronthaul in CRAN [the network segment connecting RUs and digital units (DUs)]. Therefore, we propose a hybrid cloud radio access network architecture, where a DU's functionalities can be virtualized and split at several conceivable points. Each split option results in two-level deployment of the processing functions (central site level and remote site level) connected by a transport network, called midhaul. We study the interplay of energy efficiency and midhaul bandwidth consumption under optimal processing allocation. We jointly minimize the power and midhaul bandwidth consumption in H-CRAN, while satisfying network constraints, i.e., processing and midhaul bandwidth capacity. We enable power saving functionalities by shutting down different network components. The proposed model is formulated as a constraint programming problem. The proposed solution shows that 42 percentile of midhaul bandwidth savings can be achieved compared to the fully centralized CRAN; and 35 percentile of power consumption saving can be achieved compared to the case where all the network functions are distributed at the edge.</description><subject>Bandwidth</subject><subject>Bandwidth constraint</subject><subject>Bandwidth consumption</subject><subject>Bandwidths</subject><subject>Base bands</subject><subject>Baseband</subject><subject>Cloud computing</subject><subject>Cloud radio access networks</subject><subject>cloud RAN</subject><subject>Computer architecture</subject><subject>Computer programming</subject><subject>Constraint modelling</subject><subject>Constraint programming</subject><subject>Constraint theory</subject><subject>Distributed computer systems</subject><subject>Electric power utilization</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Microprocessor chips</subject><subject>Microprocessors</subject><subject>network architecture</subject><subject>network function split</subject><subject>Power consumption</subject><subject>Power consumption savings</subject><subject>Power demand</subject><subject>Power demands</subject><subject>Radio</subject><subject>Radio access networks</subject><subject>Shutdowns</subject><subject>Transportation networks</subject><subject>virtualized cloud RAN</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFPwjAQxxejiQT5AMaXJj4Pr1032kecCCYIxqCJT83oOijCOtstBD-9xRniy93l7nf_3P2D4BpDH2Pgd4txOusTwKxPGBCK-VnQIXQQhYQCnP-rL4OecxsAIDzGCY86wce8qvUu26IXa6RyTpcrNNxujcxqbUpUG_SsS73T3wqNSmVXB5SVObr3Ya_zeo1SU7pmV_3CukSTw9LqHKWvw9lVcFFkW6d6f7kbvD2OFukknM7HT-lwGsoownUYc8gxU4pywlmSU5nEA1pARmGw9A0s5YAXmEHMiQQS0wxkUeQMZMRZUWQk6gZhq-v2qmqWorL-H3sQJtPiQb8PhbEr8VmvRYQp4dzzty1fWfPVKFeLjWls6U8UxM9xQhgBT-GWktY4Z1Vx0sUgjqaLo-niaLr4M93v3LQ7Wil14pkfx4RGP1dIfGQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Alabbasi, Abdulrahman</creator><creator>Wang, Xinbo</creator><creator>Cavdar, Cicek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-6614-5208</orcidid></search><sort><creationdate>20180601</creationdate><title>Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN</title><author>Alabbasi, Abdulrahman ; Wang, Xinbo ; Cavdar, Cicek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-590d18ee492986d4c6574f0a407b9861cc79f180592c0254a0cffd80c398ffa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidth</topic><topic>Bandwidth constraint</topic><topic>Bandwidth consumption</topic><topic>Bandwidths</topic><topic>Base bands</topic><topic>Baseband</topic><topic>Cloud computing</topic><topic>Cloud radio access networks</topic><topic>cloud RAN</topic><topic>Computer architecture</topic><topic>Computer programming</topic><topic>Constraint modelling</topic><topic>Constraint programming</topic><topic>Constraint theory</topic><topic>Distributed computer systems</topic><topic>Electric power utilization</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Microprocessor chips</topic><topic>Microprocessors</topic><topic>network architecture</topic><topic>network function split</topic><topic>Power consumption</topic><topic>Power consumption savings</topic><topic>Power demand</topic><topic>Power demands</topic><topic>Radio</topic><topic>Radio access networks</topic><topic>Shutdowns</topic><topic>Transportation networks</topic><topic>virtualized cloud RAN</topic><toplevel>online_resources</toplevel><creatorcontrib>Alabbasi, Abdulrahman</creatorcontrib><creatorcontrib>Wang, Xinbo</creatorcontrib><creatorcontrib>Cavdar, Cicek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alabbasi, Abdulrahman</au><au>Wang, Xinbo</au><au>Cavdar, Cicek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>2</volume><issue>2</issue><spage>545</spage><epage>555</epage><pages>545-555</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><abstract>Cloud radio access network (CRAN) architecture is proposed to save energy, facilitate coordination between radio units, and achieve scalable solutions to improve radio network's performance. However, stringent delay and bandwidth constraints are incurred by fronthaul in CRAN [the network segment connecting RUs and digital units (DUs)]. Therefore, we propose a hybrid cloud radio access network architecture, where a DU's functionalities can be virtualized and split at several conceivable points. Each split option results in two-level deployment of the processing functions (central site level and remote site level) connected by a transport network, called midhaul. We study the interplay of energy efficiency and midhaul bandwidth consumption under optimal processing allocation. We jointly minimize the power and midhaul bandwidth consumption in H-CRAN, while satisfying network constraints, i.e., processing and midhaul bandwidth capacity. We enable power saving functionalities by shutting down different network components. The proposed model is formulated as a constraint programming problem. The proposed solution shows that 42 percentile of midhaul bandwidth savings can be achieved compared to the fully centralized CRAN; and 35 percentile of power consumption saving can be achieved compared to the case where all the network functions are distributed at the edge.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TGCN.2018.2802419</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6614-5208</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2400
ispartof IEEE transactions on green communications and networking, 2018-06, Vol.2 (2), p.545-555
issn 2473-2400
2473-2400
language eng
recordid cdi_ieee_primary_8280524
source IEEE Xplore
subjects Bandwidth
Bandwidth constraint
Bandwidth consumption
Bandwidths
Base bands
Baseband
Cloud computing
Cloud radio access networks
cloud RAN
Computer architecture
Computer programming
Constraint modelling
Constraint programming
Constraint theory
Distributed computer systems
Electric power utilization
Energy conservation
Energy consumption
Energy efficiency
Microprocessor chips
Microprocessors
network architecture
network function split
Power consumption
Power consumption savings
Power demand
Power demands
Radio
Radio access networks
Shutdowns
Transportation networks
virtualized cloud RAN
title Optimal Processing Allocation to Minimize Energy and Bandwidth Consumption in Hybrid CRAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Processing%20Allocation%20to%20Minimize%20Energy%20and%20Bandwidth%20Consumption%20in%20Hybrid%20CRAN&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Alabbasi,%20Abdulrahman&rft.date=2018-06-01&rft.volume=2&rft.issue=2&rft.spage=545&rft.epage=555&rft.pages=545-555&rft.issn=2473-2400&rft.eissn=2473-2400&rft_id=info:doi/10.1109/TGCN.2018.2802419&rft_dat=%3Cproquest_RIE%3E2299162820%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299162820&rft_id=info:pmid/&rft_ieee_id=8280524&rfr_iscdi=true