Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-06, Vol.29 (6), p.2112-2126 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2126 |
---|---|
container_issue | 6 |
container_start_page | 2112 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 29 |
creator | Zhang, Huaguang Qu, Qiuxia Xiao, Geyang Cui, Yang |
description | Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme. |
doi_str_mv | 10.1109/TNNLS.2018.2791419 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8275509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8275509</ieee_id><sourcerecordid>2174546732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</originalsourceid><addsrcrecordid>eNpdkUtv1DAURiMEolXpHwAJWWLDJlM_Ej-WaAql0nS6mFbtznLsG5oqsQfbWVTix-NhhlnUG99rn_vJ8qmqjwQvCMHq4m69Xm0WFBO5oEKRhqg31SklnNaUSfn2WIvHk-o8pWdcFsctb9T76oQqIQjn7Wn153abh8mM6Go20fgM4NAypIw24-AG_wvdBAflxOcYRtSHuKtTjmbw4Oprv50zWgc_ltZEtHlJGaaEHob8hG5Mtk8lzniH7v106C6HlOfYGW8hfaje9WZMcH7Yz6r7H9_vlj_r1e3V9fLbqrasJbmmHFosbMt5Z5yiLXZSNpJJy4ArCq4xFhgnDve0Y1Yw0QmnJGlk3xNQTrGz6us-dxvD7xlS1tOQLIyj8RDmpCluCGcEY1nQL6_Q5zBHX16nKRFN23DBaKHonrIxpBSh19tYfjG-aIL1To_-p0fv9OiDnjL0-RA9dxO448h_GQX4tAcGADheSyraFiv2F1ZmlHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546732</pqid></control><display><type>article</type><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</creator><creatorcontrib>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</creatorcontrib><description>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2791419</identifier><identifier>PMID: 29771665</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive dynamic programming ; Algorithm design and analysis ; Approximation algorithms ; Artificial neural networks ; Computer simulation ; Control systems ; Control theory ; Disturbances ; Dynamic programming ; Dynamical systems ; Feasibility studies ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; optimal guaranteed cost ; Robustness ; single neural network (NN) ; Sliding mode control ; sliding mode control (SMC) ; unmatched disturbance ; Weight</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-06, Vol.29 (6), p.2112-2126</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</citedby><cites>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</cites><orcidid>0000-0002-0647-4050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8275509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8275509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29771665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Qiuxia</creatorcontrib><creatorcontrib>Xiao, Geyang</creatorcontrib><creatorcontrib>Cui, Yang</creatorcontrib><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</description><subject>Adaptive dynamic programming</subject><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Disturbances</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Feasibility studies</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>optimal guaranteed cost</subject><subject>Robustness</subject><subject>single neural network (NN)</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>unmatched disturbance</subject><subject>Weight</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtv1DAURiMEolXpHwAJWWLDJlM_Ej-WaAql0nS6mFbtznLsG5oqsQfbWVTix-NhhlnUG99rn_vJ8qmqjwQvCMHq4m69Xm0WFBO5oEKRhqg31SklnNaUSfn2WIvHk-o8pWdcFsctb9T76oQqIQjn7Wn153abh8mM6Go20fgM4NAypIw24-AG_wvdBAflxOcYRtSHuKtTjmbw4Oprv50zWgc_ltZEtHlJGaaEHob8hG5Mtk8lzniH7v106C6HlOfYGW8hfaje9WZMcH7Yz6r7H9_vlj_r1e3V9fLbqrasJbmmHFosbMt5Z5yiLXZSNpJJy4ArCq4xFhgnDve0Y1Yw0QmnJGlk3xNQTrGz6us-dxvD7xlS1tOQLIyj8RDmpCluCGcEY1nQL6_Q5zBHX16nKRFN23DBaKHonrIxpBSh19tYfjG-aIL1To_-p0fv9OiDnjL0-RA9dxO448h_GQX4tAcGADheSyraFiv2F1ZmlHI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zhang, Huaguang</creator><creator>Qu, Qiuxia</creator><creator>Xiao, Geyang</creator><creator>Cui, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid></search><sort><creationdate>20180601</creationdate><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><author>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive dynamic programming</topic><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Disturbances</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Feasibility studies</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>optimal guaranteed cost</topic><topic>Robustness</topic><topic>single neural network (NN)</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>unmatched disturbance</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Qiuxia</creatorcontrib><creatorcontrib>Xiao, Geyang</creatorcontrib><creatorcontrib>Cui, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Huaguang</au><au>Qu, Qiuxia</au><au>Xiao, Geyang</au><au>Cui, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>2112</spage><epage>2126</epage><pages>2112-2126</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29771665</pmid><doi>10.1109/TNNLS.2018.2791419</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2018-06, Vol.29 (6), p.2112-2126 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_ieee_primary_8275509 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive dynamic programming Algorithm design and analysis Approximation algorithms Artificial neural networks Computer simulation Control systems Control theory Disturbances Dynamic programming Dynamical systems Feasibility studies Neural networks Nonlinear control Nonlinear systems Optimal control optimal guaranteed cost Robustness single neural network (NN) Sliding mode control sliding mode control (SMC) unmatched disturbance Weight |
title | Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Guaranteed%20Cost%20Sliding%20Mode%20Control%20for%20Constrained-Input%20Nonlinear%20Systems%20With%20Matched%20and%20Unmatched%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Huaguang&rft.date=2018-06-01&rft.volume=29&rft.issue=6&rft.spage=2112&rft.epage=2126&rft.pages=2112-2126&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2791419&rft_dat=%3Cproquest_RIE%3E2174546732%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546732&rft_id=info:pmid/29771665&rft_ieee_id=8275509&rfr_iscdi=true |