Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances

Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2018-06, Vol.29 (6), p.2112-2126
Hauptverfasser: Zhang, Huaguang, Qu, Qiuxia, Xiao, Geyang, Cui, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2126
container_issue 6
container_start_page 2112
container_title IEEE transaction on neural networks and learning systems
container_volume 29
creator Zhang, Huaguang
Qu, Qiuxia
Xiao, Geyang
Cui, Yang
description Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
doi_str_mv 10.1109/TNNLS.2018.2791419
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8275509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8275509</ieee_id><sourcerecordid>2174546732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</originalsourceid><addsrcrecordid>eNpdkUtv1DAURiMEolXpHwAJWWLDJlM_Ej-WaAql0nS6mFbtznLsG5oqsQfbWVTix-NhhlnUG99rn_vJ8qmqjwQvCMHq4m69Xm0WFBO5oEKRhqg31SklnNaUSfn2WIvHk-o8pWdcFsctb9T76oQqIQjn7Wn153abh8mM6Go20fgM4NAypIw24-AG_wvdBAflxOcYRtSHuKtTjmbw4Oprv50zWgc_ltZEtHlJGaaEHob8hG5Mtk8lzniH7v106C6HlOfYGW8hfaje9WZMcH7Yz6r7H9_vlj_r1e3V9fLbqrasJbmmHFosbMt5Z5yiLXZSNpJJy4ArCq4xFhgnDve0Y1Yw0QmnJGlk3xNQTrGz6us-dxvD7xlS1tOQLIyj8RDmpCluCGcEY1nQL6_Q5zBHX16nKRFN23DBaKHonrIxpBSh19tYfjG-aIL1To_-p0fv9OiDnjL0-RA9dxO448h_GQX4tAcGADheSyraFiv2F1ZmlHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546732</pqid></control><display><type>article</type><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</creator><creatorcontrib>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</creatorcontrib><description>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2018.2791419</identifier><identifier>PMID: 29771665</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive dynamic programming ; Algorithm design and analysis ; Approximation algorithms ; Artificial neural networks ; Computer simulation ; Control systems ; Control theory ; Disturbances ; Dynamic programming ; Dynamical systems ; Feasibility studies ; Neural networks ; Nonlinear control ; Nonlinear systems ; Optimal control ; optimal guaranteed cost ; Robustness ; single neural network (NN) ; Sliding mode control ; sliding mode control (SMC) ; unmatched disturbance ; Weight</subject><ispartof>IEEE transaction on neural networks and learning systems, 2018-06, Vol.29 (6), p.2112-2126</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</citedby><cites>FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</cites><orcidid>0000-0002-0647-4050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8275509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8275509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29771665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Qiuxia</creatorcontrib><creatorcontrib>Xiao, Geyang</creatorcontrib><creatorcontrib>Cui, Yang</creatorcontrib><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</description><subject>Adaptive dynamic programming</subject><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Disturbances</subject><subject>Dynamic programming</subject><subject>Dynamical systems</subject><subject>Feasibility studies</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>optimal guaranteed cost</subject><subject>Robustness</subject><subject>single neural network (NN)</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>unmatched disturbance</subject><subject>Weight</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtv1DAURiMEolXpHwAJWWLDJlM_Ej-WaAql0nS6mFbtznLsG5oqsQfbWVTix-NhhlnUG99rn_vJ8qmqjwQvCMHq4m69Xm0WFBO5oEKRhqg31SklnNaUSfn2WIvHk-o8pWdcFsctb9T76oQqIQjn7Wn153abh8mM6Go20fgM4NAypIw24-AG_wvdBAflxOcYRtSHuKtTjmbw4Oprv50zWgc_ltZEtHlJGaaEHob8hG5Mtk8lzniH7v106C6HlOfYGW8hfaje9WZMcH7Yz6r7H9_vlj_r1e3V9fLbqrasJbmmHFosbMt5Z5yiLXZSNpJJy4ArCq4xFhgnDve0Y1Yw0QmnJGlk3xNQTrGz6us-dxvD7xlS1tOQLIyj8RDmpCluCGcEY1nQL6_Q5zBHX16nKRFN23DBaKHonrIxpBSh19tYfjG-aIL1To_-p0fv9OiDnjL0-RA9dxO448h_GQX4tAcGADheSyraFiv2F1ZmlHI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zhang, Huaguang</creator><creator>Qu, Qiuxia</creator><creator>Xiao, Geyang</creator><creator>Cui, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid></search><sort><creationdate>20180601</creationdate><title>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</title><author>Zhang, Huaguang ; Qu, Qiuxia ; Xiao, Geyang ; Cui, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-26e507c566bad9250d884838c3e692ed4ace361d0f2b3c737b7d98148ff1e9d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive dynamic programming</topic><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Disturbances</topic><topic>Dynamic programming</topic><topic>Dynamical systems</topic><topic>Feasibility studies</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>optimal guaranteed cost</topic><topic>Robustness</topic><topic>single neural network (NN)</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>unmatched disturbance</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huaguang</creatorcontrib><creatorcontrib>Qu, Qiuxia</creatorcontrib><creatorcontrib>Xiao, Geyang</creatorcontrib><creatorcontrib>Cui, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Huaguang</au><au>Qu, Qiuxia</au><au>Xiao, Geyang</au><au>Cui, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>2112</spage><epage>2126</epage><pages>2112-2126</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29771665</pmid><doi>10.1109/TNNLS.2018.2791419</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0647-4050</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2018-06, Vol.29 (6), p.2112-2126
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_8275509
source IEEE Electronic Library (IEL)
subjects Adaptive dynamic programming
Algorithm design and analysis
Approximation algorithms
Artificial neural networks
Computer simulation
Control systems
Control theory
Disturbances
Dynamic programming
Dynamical systems
Feasibility studies
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
optimal guaranteed cost
Robustness
single neural network (NN)
Sliding mode control
sliding mode control (SMC)
unmatched disturbance
Weight
title Optimal Guaranteed Cost Sliding Mode Control for Constrained-Input Nonlinear Systems With Matched and Unmatched Disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Guaranteed%20Cost%20Sliding%20Mode%20Control%20for%20Constrained-Input%20Nonlinear%20Systems%20With%20Matched%20and%20Unmatched%20Disturbances&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Huaguang&rft.date=2018-06-01&rft.volume=29&rft.issue=6&rft.spage=2112&rft.epage=2126&rft.pages=2112-2126&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2018.2791419&rft_dat=%3Cproquest_RIE%3E2174546732%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546732&rft_id=info:pmid/29771665&rft_ieee_id=8275509&rfr_iscdi=true