Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels

Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2018-05, Vol.64 (5), p.3431-3449
Hauptverfasser: Aref, Vahid, Rengaswamy, Narayanan, Schmalen, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3449
container_issue 5
container_start_page 3431
container_title IEEE transactions on information theory
container_volume 64
creator Aref, Vahid
Rengaswamy, Narayanan
Schmalen, Laurent
description Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability ( P_ {\mathrm{ \scriptscriptstyle B}} ) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability p , potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.
doi_str_mv 10.1109/TIT.2018.2799621
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8272426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8272426</ieee_id><sourcerecordid>2174478720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demjTNcdZNBwVF500oaZpsHVlbk_aw_96ODU-PH-_7PXgfQvdAZgBEPq1X6xklkM6okDKhcIEmwLmIZMLZJZqQcRVJxtJrdBPCboyMA52gn2Xd1L2JctNs-i2eN8odQh1wa_FXp_paOXeIsnbonKnwp9kMTnmcv3xkeNEEsy-dGdkGPw8-9NHCqzB4g7Otahrjwi26ssoFc3eeU_S9XKyztyh_f11l8zzSVEIfKassJ5UwpbTaGgYJZVUZcx3HUNGq1ByYqHSqOAHLCOiSQpWkkKQ6BUkhnqLH093Ot7-DCX2xawc_vhIKCoIxkQpKRoqcKO3bELyxRefrvfKHAkhxdFiMDoujw-LscKw8nCq1MeYfT6mgjCbxH-sHbPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174478720</pqid></control><display><type>article</type><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</creator><creatorcontrib>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</creatorcontrib><description><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2799621</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>burst erasures ; Bursting ; Bursts ; Channel models ; Channels ; Codes ; Codes on graphs ; Computer simulation ; Couplings ; Decoding ; Density ; Error correcting codes ; finite length code performance ; Iterative decoding ; low-density parity-check (LDPC) codes ; Lower bounds ; Monte Carlo simulation ; Noise measurement ; Sockets ; spatial coupling ; stopping sets</subject><ispartof>IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3431-3449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</citedby><cites>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</cites><orcidid>0000-0003-3893-0345 ; 0000-0002-2369-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8272426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8272426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aref, Vahid</creatorcontrib><creatorcontrib>Rengaswamy, Narayanan</creatorcontrib><creatorcontrib>Schmalen, Laurent</creatorcontrib><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></description><subject>burst erasures</subject><subject>Bursting</subject><subject>Bursts</subject><subject>Channel models</subject><subject>Channels</subject><subject>Codes</subject><subject>Codes on graphs</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Decoding</subject><subject>Density</subject><subject>Error correcting codes</subject><subject>finite length code performance</subject><subject>Iterative decoding</subject><subject>low-density parity-check (LDPC) codes</subject><subject>Lower bounds</subject><subject>Monte Carlo simulation</subject><subject>Noise measurement</subject><subject>Sockets</subject><subject>spatial coupling</subject><subject>stopping sets</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demjTNcdZNBwVF500oaZpsHVlbk_aw_96ODU-PH-_7PXgfQvdAZgBEPq1X6xklkM6okDKhcIEmwLmIZMLZJZqQcRVJxtJrdBPCboyMA52gn2Xd1L2JctNs-i2eN8odQh1wa_FXp_paOXeIsnbonKnwp9kMTnmcv3xkeNEEsy-dGdkGPw8-9NHCqzB4g7Otahrjwi26ssoFc3eeU_S9XKyztyh_f11l8zzSVEIfKassJ5UwpbTaGgYJZVUZcx3HUNGq1ByYqHSqOAHLCOiSQpWkkKQ6BUkhnqLH093Ot7-DCX2xawc_vhIKCoIxkQpKRoqcKO3bELyxRefrvfKHAkhxdFiMDoujw-LscKw8nCq1MeYfT6mgjCbxH-sHbPs</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Aref, Vahid</creator><creator>Rengaswamy, Narayanan</creator><creator>Schmalen, Laurent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3893-0345</orcidid><orcidid>https://orcid.org/0000-0002-2369-3159</orcidid></search><sort><creationdate>20180501</creationdate><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><author>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>burst erasures</topic><topic>Bursting</topic><topic>Bursts</topic><topic>Channel models</topic><topic>Channels</topic><topic>Codes</topic><topic>Codes on graphs</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Decoding</topic><topic>Density</topic><topic>Error correcting codes</topic><topic>finite length code performance</topic><topic>Iterative decoding</topic><topic>low-density parity-check (LDPC) codes</topic><topic>Lower bounds</topic><topic>Monte Carlo simulation</topic><topic>Noise measurement</topic><topic>Sockets</topic><topic>spatial coupling</topic><topic>stopping sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aref, Vahid</creatorcontrib><creatorcontrib>Rengaswamy, Narayanan</creatorcontrib><creatorcontrib>Schmalen, Laurent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aref, Vahid</au><au>Rengaswamy, Narayanan</au><au>Schmalen, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>3431</spage><epage>3449</epage><pages>3431-3449</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2799621</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3893-0345</orcidid><orcidid>https://orcid.org/0000-0002-2369-3159</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3431-3449
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8272426
source IEEE Electronic Library (IEL)
subjects burst erasures
Bursting
Bursts
Channel models
Channels
Codes
Codes on graphs
Computer simulation
Couplings
Decoding
Density
Error correcting codes
finite length code performance
Iterative decoding
low-density parity-check (LDPC) codes
Lower bounds
Monte Carlo simulation
Noise measurement
Sockets
spatial coupling
stopping sets
title Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Length%20Analysis%20of%20Spatially-Coupled%20Regular%20LDPC%20Ensembles%20on%20Burst-Erasure%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aref,%20Vahid&rft.date=2018-05-01&rft.volume=64&rft.issue=5&rft.spage=3431&rft.epage=3449&rft.pages=3431-3449&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2799621&rft_dat=%3Cproquest_RIE%3E2174478720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174478720&rft_id=info:pmid/&rft_ieee_id=8272426&rfr_iscdi=true