Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels
Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2018-05, Vol.64 (5), p.3431-3449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3449 |
---|---|
container_issue | 5 |
container_start_page | 3431 |
container_title | IEEE transactions on information theory |
container_volume | 64 |
creator | Aref, Vahid Rengaswamy, Narayanan Schmalen, Laurent |
description | Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability ( P_ {\mathrm{ \scriptscriptstyle B}} ) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability p , potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations. |
doi_str_mv | 10.1109/TIT.2018.2799621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8272426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8272426</ieee_id><sourcerecordid>2174478720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demjTNcdZNBwVF500oaZpsHVlbk_aw_96ODU-PH-_7PXgfQvdAZgBEPq1X6xklkM6okDKhcIEmwLmIZMLZJZqQcRVJxtJrdBPCboyMA52gn2Xd1L2JctNs-i2eN8odQh1wa_FXp_paOXeIsnbonKnwp9kMTnmcv3xkeNEEsy-dGdkGPw8-9NHCqzB4g7Otahrjwi26ssoFc3eeU_S9XKyztyh_f11l8zzSVEIfKassJ5UwpbTaGgYJZVUZcx3HUNGq1ByYqHSqOAHLCOiSQpWkkKQ6BUkhnqLH093Ot7-DCX2xawc_vhIKCoIxkQpKRoqcKO3bELyxRefrvfKHAkhxdFiMDoujw-LscKw8nCq1MeYfT6mgjCbxH-sHbPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174478720</pqid></control><display><type>article</type><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</creator><creatorcontrib>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</creatorcontrib><description><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2018.2799621</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>burst erasures ; Bursting ; Bursts ; Channel models ; Channels ; Codes ; Codes on graphs ; Computer simulation ; Couplings ; Decoding ; Density ; Error correcting codes ; finite length code performance ; Iterative decoding ; low-density parity-check (LDPC) codes ; Lower bounds ; Monte Carlo simulation ; Noise measurement ; Sockets ; spatial coupling ; stopping sets</subject><ispartof>IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3431-3449</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</citedby><cites>FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</cites><orcidid>0000-0003-3893-0345 ; 0000-0002-2369-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8272426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8272426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aref, Vahid</creatorcontrib><creatorcontrib>Rengaswamy, Narayanan</creatorcontrib><creatorcontrib>Schmalen, Laurent</creatorcontrib><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></description><subject>burst erasures</subject><subject>Bursting</subject><subject>Bursts</subject><subject>Channel models</subject><subject>Channels</subject><subject>Codes</subject><subject>Codes on graphs</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Decoding</subject><subject>Density</subject><subject>Error correcting codes</subject><subject>finite length code performance</subject><subject>Iterative decoding</subject><subject>low-density parity-check (LDPC) codes</subject><subject>Lower bounds</subject><subject>Monte Carlo simulation</subject><subject>Noise measurement</subject><subject>Sockets</subject><subject>spatial coupling</subject><subject>stopping sets</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2demjTNcdZNBwVF500oaZpsHVlbk_aw_96ODU-PH-_7PXgfQvdAZgBEPq1X6xklkM6okDKhcIEmwLmIZMLZJZqQcRVJxtJrdBPCboyMA52gn2Xd1L2JctNs-i2eN8odQh1wa_FXp_paOXeIsnbonKnwp9kMTnmcv3xkeNEEsy-dGdkGPw8-9NHCqzB4g7Otahrjwi26ssoFc3eeU_S9XKyztyh_f11l8zzSVEIfKassJ5UwpbTaGgYJZVUZcx3HUNGq1ByYqHSqOAHLCOiSQpWkkKQ6BUkhnqLH093Ot7-DCX2xawc_vhIKCoIxkQpKRoqcKO3bELyxRefrvfKHAkhxdFiMDoujw-LscKw8nCq1MeYfT6mgjCbxH-sHbPs</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Aref, Vahid</creator><creator>Rengaswamy, Narayanan</creator><creator>Schmalen, Laurent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3893-0345</orcidid><orcidid>https://orcid.org/0000-0002-2369-3159</orcidid></search><sort><creationdate>20180501</creationdate><title>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</title><author>Aref, Vahid ; Rengaswamy, Narayanan ; Schmalen, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-afaf50d7eb9fcfe41624db35c331d2dbc5147dc8a501f401cb21d68168c819213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>burst erasures</topic><topic>Bursting</topic><topic>Bursts</topic><topic>Channel models</topic><topic>Channels</topic><topic>Codes</topic><topic>Codes on graphs</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Decoding</topic><topic>Density</topic><topic>Error correcting codes</topic><topic>finite length code performance</topic><topic>Iterative decoding</topic><topic>low-density parity-check (LDPC) codes</topic><topic>Lower bounds</topic><topic>Monte Carlo simulation</topic><topic>Noise measurement</topic><topic>Sockets</topic><topic>spatial coupling</topic><topic>stopping sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aref, Vahid</creatorcontrib><creatorcontrib>Rengaswamy, Narayanan</creatorcontrib><creatorcontrib>Schmalen, Laurent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aref, Vahid</au><au>Rengaswamy, Narayanan</au><au>Schmalen, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>64</volume><issue>5</issue><spage>3431</spage><epage>3449</epage><pages>3431-3449</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[Regular spatially-coupled low-density parity-check ensembles have gained significant interest, since they were shown to universally achieve the capacity of binary memoryless channels under low-complexity belief-propagation decoding. In this paper, we focus primarily on the performance of these ensembles over binary channels affected by bursts of erasures. We first develop an analysis of the finite length performance for a single burst per code word and no errors otherwise. We first assume that the burst erases a complete spatial position, modeling for instance node failures in distributed storage. We provide new tight lower bounds for the block erasure probability (<inline-formula> <tex-math notation="LaTeX">P_ {\mathrm{ \scriptscriptstyle B}} </tex-math></inline-formula>) at finite block length and bounds on the coupling parameter for being asymptotically able to recover the burst. We further show that expurgating the ensemble can improve the block erasure probability by several orders of magnitude. Later we extend our methodology to more general channel models. In a first extension, we consider bursts that can start at a random location in the code word and span across multiple spatial positions. Besides the finite length analysis, we determine by means of density evolution the maximum correctable burst length. In a second extension, we consider the case where in addition to a single burst, random bit erasures may occur. Finally, we consider a block erasure channel model which erases each spatial position independently with some probability <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula>, potentially introducing multiple bursts simultaneously. All results are verified using Monte-Carlo simulations.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2018.2799621</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3893-0345</orcidid><orcidid>https://orcid.org/0000-0002-2369-3159</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2018-05, Vol.64 (5), p.3431-3449 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_8272426 |
source | IEEE Electronic Library (IEL) |
subjects | burst erasures Bursting Bursts Channel models Channels Codes Codes on graphs Computer simulation Couplings Decoding Density Error correcting codes finite length code performance Iterative decoding low-density parity-check (LDPC) codes Lower bounds Monte Carlo simulation Noise measurement Sockets spatial coupling stopping sets |
title | Finite-Length Analysis of Spatially-Coupled Regular LDPC Ensembles on Burst-Erasure Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Length%20Analysis%20of%20Spatially-Coupled%20Regular%20LDPC%20Ensembles%20on%20Burst-Erasure%20Channels&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Aref,%20Vahid&rft.date=2018-05-01&rft.volume=64&rft.issue=5&rft.spage=3431&rft.epage=3449&rft.pages=3431-3449&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2018.2799621&rft_dat=%3Cproquest_RIE%3E2174478720%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174478720&rft_id=info:pmid/&rft_ieee_id=8272426&rfr_iscdi=true |