An Imbalance Modified Deep Neural Network With Dynamical Incremental Learning for Chemical Fault Diagnosis
In this paper, a data-driven fault diagnosis model dealing with chemical imbalanced data streams is investigated. Different faults occur with varied frequencies by continuous arrival in chemical plants, while this issue has been hardly addressed in developing a diagnosis model. A novel incremental i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2019-01, Vol.66 (1), p.540-550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!