GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas

In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2018-03, Vol.39 (3), p.417-420
Hauptverfasser: Shinohara, Keisuke, King, Casey, Carter, Andrew D., Regan, Eric J., Arias, Andrea, Bergman, Joshua, Urteaga, Miguel, Brar, Berinder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 3
container_start_page 417
container_title IEEE electron device letters
container_volume 39
creator Shinohara, Keisuke
King, Casey
Carter, Andrew D.
Regan, Eric J.
Arias, Andrea
Bergman, Joshua
Urteaga, Miguel
Brar, Berinder
description In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced {g}_{m} derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.
doi_str_mv 10.1109/LED.2018.2797940
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8269269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8269269</ieee_id><sourcerecordid>2010402494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA562zH8nuHrVNqxD0EvEYNskspqRN3U2R_nu3tAgDMzDPOwwPIfcMZoyBeSryxYwD0zOujDISLsiEpammkGbikkxASUYFg-ya3ISwBmBSKjkh5cq-0xcbsE2WHfYtzZ3DZkxKb7ehC-PgQ_LVjd9JYUf0tu8PySpObVL-DnTRbTBSw9b2Sd7HmB-2cR1uyZWzfcC7c5-Sz2Vezl9p8bF6mz8XtOGGjZQ7JbhSoESb1oqrxtQ2lTU6FDZDDS2TGhqZ8lqA0U1rMmtbLrWSDXOYGjElj6e7Oz_87DGM1XrY-_hNqKIKkMClkZGCE9X4IQSPrtr5bmP9oWJQHd1V0d0xoKuzuxh5OEU6RPzHNc9MLPEHAAxpIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010402494</pqid></control><display><type>article</type><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><source>IEEE Electronic Library (IEL)</source><creator>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</creator><creatorcontrib>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</creatorcontrib><description>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{g}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2018.2797940</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2DEG ; Accelerated life tests ; Accelerated tests ; BRIDGE ; Bridge circuits ; buried gate ; Electron gas ; Field effect transistors ; Gallium nitride ; GaN ; HEMTs ; high-linearity ; Knee ; lateral gate ; Linearity ; Logic gates ; MODFETs ; Piezoelectricity ; Power amplifiers ; Resistance ; Semiconductor devices ; Transistors</subject><ispartof>IEEE electron device letters, 2018-03, Vol.39 (3), p.417-420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</citedby><cites>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</cites><orcidid>0000-0001-5077-8249 ; 0000-0001-5127-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8269269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8269269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shinohara, Keisuke</creatorcontrib><creatorcontrib>King, Casey</creatorcontrib><creatorcontrib>Carter, Andrew D.</creatorcontrib><creatorcontrib>Regan, Eric J.</creatorcontrib><creatorcontrib>Arias, Andrea</creatorcontrib><creatorcontrib>Bergman, Joshua</creatorcontrib><creatorcontrib>Urteaga, Miguel</creatorcontrib><creatorcontrib>Brar, Berinder</creatorcontrib><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{g}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</description><subject>2DEG</subject><subject>Accelerated life tests</subject><subject>Accelerated tests</subject><subject>BRIDGE</subject><subject>Bridge circuits</subject><subject>buried gate</subject><subject>Electron gas</subject><subject>Field effect transistors</subject><subject>Gallium nitride</subject><subject>GaN</subject><subject>HEMTs</subject><subject>high-linearity</subject><subject>Knee</subject><subject>lateral gate</subject><subject>Linearity</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>Piezoelectricity</subject><subject>Power amplifiers</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA562zH8nuHrVNqxD0EvEYNskspqRN3U2R_nu3tAgDMzDPOwwPIfcMZoyBeSryxYwD0zOujDISLsiEpammkGbikkxASUYFg-ya3ISwBmBSKjkh5cq-0xcbsE2WHfYtzZ3DZkxKb7ehC-PgQ_LVjd9JYUf0tu8PySpObVL-DnTRbTBSw9b2Sd7HmB-2cR1uyZWzfcC7c5-Sz2Vezl9p8bF6mz8XtOGGjZQ7JbhSoESb1oqrxtQ2lTU6FDZDDS2TGhqZ8lqA0U1rMmtbLrWSDXOYGjElj6e7Oz_87DGM1XrY-_hNqKIKkMClkZGCE9X4IQSPrtr5bmP9oWJQHd1V0d0xoKuzuxh5OEU6RPzHNc9MLPEHAAxpIw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Shinohara, Keisuke</creator><creator>King, Casey</creator><creator>Carter, Andrew D.</creator><creator>Regan, Eric J.</creator><creator>Arias, Andrea</creator><creator>Bergman, Joshua</creator><creator>Urteaga, Miguel</creator><creator>Brar, Berinder</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5077-8249</orcidid><orcidid>https://orcid.org/0000-0001-5127-929X</orcidid></search><sort><creationdate>20180301</creationdate><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><author>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2DEG</topic><topic>Accelerated life tests</topic><topic>Accelerated tests</topic><topic>BRIDGE</topic><topic>Bridge circuits</topic><topic>buried gate</topic><topic>Electron gas</topic><topic>Field effect transistors</topic><topic>Gallium nitride</topic><topic>GaN</topic><topic>HEMTs</topic><topic>high-linearity</topic><topic>Knee</topic><topic>lateral gate</topic><topic>Linearity</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>Piezoelectricity</topic><topic>Power amplifiers</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinohara, Keisuke</creatorcontrib><creatorcontrib>King, Casey</creatorcontrib><creatorcontrib>Carter, Andrew D.</creatorcontrib><creatorcontrib>Regan, Eric J.</creatorcontrib><creatorcontrib>Arias, Andrea</creatorcontrib><creatorcontrib>Bergman, Joshua</creatorcontrib><creatorcontrib>Urteaga, Miguel</creatorcontrib><creatorcontrib>Brar, Berinder</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shinohara, Keisuke</au><au>King, Casey</au><au>Carter, Andrew D.</au><au>Regan, Eric J.</au><au>Arias, Andrea</au><au>Bergman, Joshua</au><au>Urteaga, Miguel</au><au>Brar, Berinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>39</volume><issue>3</issue><spage>417</spage><epage>420</epage><pages>417-420</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{g}_{m} &lt;/tex-math&gt;&lt;/inline-formula&gt; derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2018.2797940</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5077-8249</orcidid><orcidid>https://orcid.org/0000-0001-5127-929X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2018-03, Vol.39 (3), p.417-420
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_8269269
source IEEE Electronic Library (IEL)
subjects 2DEG
Accelerated life tests
Accelerated tests
BRIDGE
Bridge circuits
buried gate
Electron gas
Field effect transistors
Gallium nitride
GaN
HEMTs
high-linearity
Knee
lateral gate
Linearity
Logic gates
MODFETs
Piezoelectricity
Power amplifiers
Resistance
Semiconductor devices
Transistors
title GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaN-Based%20Field-Effect%20Transistors%20With%20Laterally%20Gated%20Two-Dimensional%20Electron%20Gas&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Shinohara,%20Keisuke&rft.date=2018-03-01&rft.volume=39&rft.issue=3&rft.spage=417&rft.epage=420&rft.pages=417-420&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2018.2797940&rft_dat=%3Cproquest_RIE%3E2010402494%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010402494&rft_id=info:pmid/&rft_ieee_id=8269269&rfr_iscdi=true