GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas
In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enha...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2018-03, Vol.39 (3), p.417-420 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 3 |
container_start_page | 417 |
container_title | IEEE electron device letters |
container_volume | 39 |
creator | Shinohara, Keisuke King, Casey Carter, Andrew D. Regan, Eric J. Arias, Andrea Bergman, Joshua Urteaga, Miguel Brar, Berinder |
description | In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced {g}_{m} derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity. |
doi_str_mv | 10.1109/LED.2018.2797940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8269269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8269269</ieee_id><sourcerecordid>2010402494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA562zH8nuHrVNqxD0EvEYNskspqRN3U2R_nu3tAgDMzDPOwwPIfcMZoyBeSryxYwD0zOujDISLsiEpammkGbikkxASUYFg-ya3ISwBmBSKjkh5cq-0xcbsE2WHfYtzZ3DZkxKb7ehC-PgQ_LVjd9JYUf0tu8PySpObVL-DnTRbTBSw9b2Sd7HmB-2cR1uyZWzfcC7c5-Sz2Vezl9p8bF6mz8XtOGGjZQ7JbhSoESb1oqrxtQ2lTU6FDZDDS2TGhqZ8lqA0U1rMmtbLrWSDXOYGjElj6e7Oz_87DGM1XrY-_hNqKIKkMClkZGCE9X4IQSPrtr5bmP9oWJQHd1V0d0xoKuzuxh5OEU6RPzHNc9MLPEHAAxpIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010402494</pqid></control><display><type>article</type><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><source>IEEE Electronic Library (IEL)</source><creator>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</creator><creatorcontrib>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</creatorcontrib><description>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced <inline-formula> <tex-math notation="LaTeX">{g}_{m} </tex-math></inline-formula> derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2018.2797940</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2DEG ; Accelerated life tests ; Accelerated tests ; BRIDGE ; Bridge circuits ; buried gate ; Electron gas ; Field effect transistors ; Gallium nitride ; GaN ; HEMTs ; high-linearity ; Knee ; lateral gate ; Linearity ; Logic gates ; MODFETs ; Piezoelectricity ; Power amplifiers ; Resistance ; Semiconductor devices ; Transistors</subject><ispartof>IEEE electron device letters, 2018-03, Vol.39 (3), p.417-420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</citedby><cites>FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</cites><orcidid>0000-0001-5077-8249 ; 0000-0001-5127-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8269269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8269269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shinohara, Keisuke</creatorcontrib><creatorcontrib>King, Casey</creatorcontrib><creatorcontrib>Carter, Andrew D.</creatorcontrib><creatorcontrib>Regan, Eric J.</creatorcontrib><creatorcontrib>Arias, Andrea</creatorcontrib><creatorcontrib>Bergman, Joshua</creatorcontrib><creatorcontrib>Urteaga, Miguel</creatorcontrib><creatorcontrib>Brar, Berinder</creatorcontrib><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced <inline-formula> <tex-math notation="LaTeX">{g}_{m} </tex-math></inline-formula> derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</description><subject>2DEG</subject><subject>Accelerated life tests</subject><subject>Accelerated tests</subject><subject>BRIDGE</subject><subject>Bridge circuits</subject><subject>buried gate</subject><subject>Electron gas</subject><subject>Field effect transistors</subject><subject>Gallium nitride</subject><subject>GaN</subject><subject>HEMTs</subject><subject>high-linearity</subject><subject>Knee</subject><subject>lateral gate</subject><subject>Linearity</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>Piezoelectricity</subject><subject>Power amplifiers</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA562zH8nuHrVNqxD0EvEYNskspqRN3U2R_nu3tAgDMzDPOwwPIfcMZoyBeSryxYwD0zOujDISLsiEpammkGbikkxASUYFg-ya3ISwBmBSKjkh5cq-0xcbsE2WHfYtzZ3DZkxKb7ehC-PgQ_LVjd9JYUf0tu8PySpObVL-DnTRbTBSw9b2Sd7HmB-2cR1uyZWzfcC7c5-Sz2Vezl9p8bF6mz8XtOGGjZQ7JbhSoESb1oqrxtQ2lTU6FDZDDS2TGhqZ8lqA0U1rMmtbLrWSDXOYGjElj6e7Oz_87DGM1XrY-_hNqKIKkMClkZGCE9X4IQSPrtr5bmP9oWJQHd1V0d0xoKuzuxh5OEU6RPzHNc9MLPEHAAxpIw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Shinohara, Keisuke</creator><creator>King, Casey</creator><creator>Carter, Andrew D.</creator><creator>Regan, Eric J.</creator><creator>Arias, Andrea</creator><creator>Bergman, Joshua</creator><creator>Urteaga, Miguel</creator><creator>Brar, Berinder</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5077-8249</orcidid><orcidid>https://orcid.org/0000-0001-5127-929X</orcidid></search><sort><creationdate>20180301</creationdate><title>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</title><author>Shinohara, Keisuke ; King, Casey ; Carter, Andrew D. ; Regan, Eric J. ; Arias, Andrea ; Bergman, Joshua ; Urteaga, Miguel ; Brar, Berinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2f73277073d5b727c9ba54befe3a6e80d1480c452b3098cd96aad24874c1fe593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>2DEG</topic><topic>Accelerated life tests</topic><topic>Accelerated tests</topic><topic>BRIDGE</topic><topic>Bridge circuits</topic><topic>buried gate</topic><topic>Electron gas</topic><topic>Field effect transistors</topic><topic>Gallium nitride</topic><topic>GaN</topic><topic>HEMTs</topic><topic>high-linearity</topic><topic>Knee</topic><topic>lateral gate</topic><topic>Linearity</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>Piezoelectricity</topic><topic>Power amplifiers</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinohara, Keisuke</creatorcontrib><creatorcontrib>King, Casey</creatorcontrib><creatorcontrib>Carter, Andrew D.</creatorcontrib><creatorcontrib>Regan, Eric J.</creatorcontrib><creatorcontrib>Arias, Andrea</creatorcontrib><creatorcontrib>Bergman, Joshua</creatorcontrib><creatorcontrib>Urteaga, Miguel</creatorcontrib><creatorcontrib>Brar, Berinder</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shinohara, Keisuke</au><au>King, Casey</au><au>Carter, Andrew D.</au><au>Regan, Eric J.</au><au>Arias, Andrea</au><au>Bergman, Joshua</au><au>Urteaga, Miguel</au><au>Brar, Berinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>39</volume><issue>3</issue><spage>417</spage><epage>420</epage><pages>417-420</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, we report on GaN-based field-effect transistors with laterally gated two-dimensional electron gas (2DEG). The drain current of the transistor is controlled solely by modulating the width of the 2DEG between buried gates. The lateral Schottky gate contact to the GaN channel layer enhances electron confinement by raising electrostatic potential below the 2DEG, improving isolation between the source and drain. Complete elimination of a top-contact gate reduces the density of trapped electrons near the surface and alleviates capacitive coupling between the trapped electrons and the 2DEG. Owing to the unique device structure and operation principle, the 150-nm-gate transistors with a channel width of 250 nm demonstrated: extremely small output conductance, drain-induced barrier lowering, knee voltage, and knee current collapse, greatly reduced <inline-formula> <tex-math notation="LaTeX">{g}_{m} </tex-math></inline-formula> derivatives near threshold, and nearly constant RF gain along the resistive load line. Furthermore, a preliminary accelerated life test indicated enhanced device reliability due to an absence of the inverse piezoelectric effect. The proposed transistors hold great promise for realizing reliable and efficient power amplifiers with improved transistor linearity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2018.2797940</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5077-8249</orcidid><orcidid>https://orcid.org/0000-0001-5127-929X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2018-03, Vol.39 (3), p.417-420 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_8269269 |
source | IEEE Electronic Library (IEL) |
subjects | 2DEG Accelerated life tests Accelerated tests BRIDGE Bridge circuits buried gate Electron gas Field effect transistors Gallium nitride GaN HEMTs high-linearity Knee lateral gate Linearity Logic gates MODFETs Piezoelectricity Power amplifiers Resistance Semiconductor devices Transistors |
title | GaN-Based Field-Effect Transistors With Laterally Gated Two-Dimensional Electron Gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaN-Based%20Field-Effect%20Transistors%20With%20Laterally%20Gated%20Two-Dimensional%20Electron%20Gas&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Shinohara,%20Keisuke&rft.date=2018-03-01&rft.volume=39&rft.issue=3&rft.spage=417&rft.epage=420&rft.pages=417-420&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2018.2797940&rft_dat=%3Cproquest_RIE%3E2010402494%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010402494&rft_id=info:pmid/&rft_ieee_id=8269269&rfr_iscdi=true |