Soft Range Information for Network Localization

The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of receive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-06, Vol.66 (12), p.3155-3168
Hauptverfasser: Mazuelas, Santiago, Conti, Andrea, Allen, Jeffery C., Win, Moe Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3168
container_issue 12
container_start_page 3155
container_title IEEE transactions on signal processing
container_volume 66
creator Mazuelas, Santiago
Conti, Andrea
Allen, Jeffery C.
Win, Moe Z.
description The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramér-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.
doi_str_mv 10.1109/TSP.2018.2795537
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8264804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8264804</ieee_id><sourcerecordid>10_1109_TSP_2018_2795537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-45a021fd74a480fd3213ff4f0a5446cd3c2a6e670a06a46ae6ac02baaa521b1a3</originalsourceid><addsrcrecordid>eNo9j1tLw0AQhRdRsFbfBV_yB5LO7DV5lOKlEFRsBd-W6WZXom1WNgHRX29qi09zYM45nI-xS4QCEarZavlUcMCy4KZSSpgjNsFKYg7S6ONRgxK5Ks3rKTvr-3cAlLLSEzZbxjBkz9S9-WzRhZi2NLSxy0aVPfjhK6aPrI6ONu3P3-OcnQTa9P7icKfs5fZmNb_P68e7xfy6zp0ANeRSEXAMjZEkSwiN4ChCkAFISaldIxwn7bUBAk1Sk9fkgK-JSHFcI4kpg32vS7Hvkw_2M7VbSt8Wwe6A7Qhsd8D2ADxGrvaR1nv_by-5HhdI8QtJb1Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soft Range Information for Network Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Mazuelas, Santiago ; Conti, Andrea ; Allen, Jeffery C. ; Win, Moe Z.</creator><creatorcontrib>Mazuelas, Santiago ; Conti, Andrea ; Allen, Jeffery C. ; Win, Moe Z.</creatorcontrib><description>The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramér-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2795537</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Detectors ; machine learning ; Machine learning algorithms ; network localization ; Particle measurements ; Position measurement ; Signal processing algorithms ; Soft range information ; Wireless communication ; wireless propagation</subject><ispartof>IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3155-3168</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-45a021fd74a480fd3213ff4f0a5446cd3c2a6e670a06a46ae6ac02baaa521b1a3</citedby><cites>FETCH-LOGICAL-c305t-45a021fd74a480fd3213ff4f0a5446cd3c2a6e670a06a46ae6ac02baaa521b1a3</cites><orcidid>0000-0002-6608-8581 ; 0000-0002-8573-0488 ; 0000-0001-9224-2178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8264804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8264804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mazuelas, Santiago</creatorcontrib><creatorcontrib>Conti, Andrea</creatorcontrib><creatorcontrib>Allen, Jeffery C.</creatorcontrib><creatorcontrib>Win, Moe Z.</creatorcontrib><title>Soft Range Information for Network Localization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramér-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.</description><subject>Atmospheric measurements</subject><subject>Detectors</subject><subject>machine learning</subject><subject>Machine learning algorithms</subject><subject>network localization</subject><subject>Particle measurements</subject><subject>Position measurement</subject><subject>Signal processing algorithms</subject><subject>Soft range information</subject><subject>Wireless communication</subject><subject>wireless propagation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j1tLw0AQhRdRsFbfBV_yB5LO7DV5lOKlEFRsBd-W6WZXom1WNgHRX29qi09zYM45nI-xS4QCEarZavlUcMCy4KZSSpgjNsFKYg7S6ONRgxK5Ks3rKTvr-3cAlLLSEzZbxjBkz9S9-WzRhZi2NLSxy0aVPfjhK6aPrI6ONu3P3-OcnQTa9P7icKfs5fZmNb_P68e7xfy6zp0ANeRSEXAMjZEkSwiN4ChCkAFISaldIxwn7bUBAk1Sk9fkgK-JSHFcI4kpg32vS7Hvkw_2M7VbSt8Wwe6A7Qhsd8D2ADxGrvaR1nv_by-5HhdI8QtJb1Gg</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Mazuelas, Santiago</creator><creator>Conti, Andrea</creator><creator>Allen, Jeffery C.</creator><creator>Win, Moe Z.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6608-8581</orcidid><orcidid>https://orcid.org/0000-0002-8573-0488</orcidid><orcidid>https://orcid.org/0000-0001-9224-2178</orcidid></search><sort><creationdate>20180615</creationdate><title>Soft Range Information for Network Localization</title><author>Mazuelas, Santiago ; Conti, Andrea ; Allen, Jeffery C. ; Win, Moe Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-45a021fd74a480fd3213ff4f0a5446cd3c2a6e670a06a46ae6ac02baaa521b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric measurements</topic><topic>Detectors</topic><topic>machine learning</topic><topic>Machine learning algorithms</topic><topic>network localization</topic><topic>Particle measurements</topic><topic>Position measurement</topic><topic>Signal processing algorithms</topic><topic>Soft range information</topic><topic>Wireless communication</topic><topic>wireless propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazuelas, Santiago</creatorcontrib><creatorcontrib>Conti, Andrea</creatorcontrib><creatorcontrib>Allen, Jeffery C.</creatorcontrib><creatorcontrib>Win, Moe Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mazuelas, Santiago</au><au>Conti, Andrea</au><au>Allen, Jeffery C.</au><au>Win, Moe Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Range Information for Network Localization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-06-15</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>3155</spage><epage>3168</epage><pages>3155-3168</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The demand for accurate localization in complex environments continues to increase despite the difficulty in extracting positional information from measurements. Conventional range-based localization approaches rely on distance estimates obtained from measurements (e.g., delay or strength of received waveforms). This paper goes one step further and develops localization techniques that rely on all probable range values rather than on a single estimate of each distance. In particular, the concept of soft range information (SRI) is introduced, showing its essential role for network localization. We then establish a general framework for SRI-based localization and develop algorithms for obtaining the SRI using machine learning techniques. The performance of the proposed approach is quantified via network experimentation in indoor environments. The results show that SRI-based localization techniques can achieve performance approaching the Cramér-Rao lower bound and significantly outperform the conventional techniques especially in harsh wireless environments.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2795537</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6608-8581</orcidid><orcidid>https://orcid.org/0000-0002-8573-0488</orcidid><orcidid>https://orcid.org/0000-0001-9224-2178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3155-3168
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8264804
source IEEE Electronic Library (IEL)
subjects Atmospheric measurements
Detectors
machine learning
Machine learning algorithms
network localization
Particle measurements
Position measurement
Signal processing algorithms
Soft range information
Wireless communication
wireless propagation
title Soft Range Information for Network Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Range%20Information%20for%20Network%20Localization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Mazuelas,%20Santiago&rft.date=2018-06-15&rft.volume=66&rft.issue=12&rft.spage=3155&rft.epage=3168&rft.pages=3155-3168&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2795537&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2018_2795537%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8264804&rfr_iscdi=true