Design and Analysis Progress of ITER Diagnostic Equatorial Port #09
ITER is the world's largest fusion device currently under construction in the South of France with >50 diagnostic systems to be installed inside the port plugs (PPs), the interspace (IS), or the port cell region of various diagnostic ports. The plasma facing diagnostic first wall (DFW) and i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2018-05, Vol.46 (5), p.1254-1261 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1261 |
---|---|
container_issue | 5 |
container_start_page | 1254 |
container_title | IEEE transactions on plasma science |
container_volume | 46 |
creator | Zhai, Yuhu Basile, Allan Feder, R. Wang, W. Chen, Jingping Khodak, Andrei Klabacha, Jonathan Paul Johnson, D. Hause, M. Messineo, M. Zhang, Han Gonzalez-Teodoro, Jorge Rafael Guirao, Julio Iglesias, Silvia |
description | ITER is the world's largest fusion device currently under construction in the South of France with >50 diagnostic systems to be installed inside the port plugs (PPs), the interspace (IS), or the port cell region of various diagnostic ports. The plasma facing diagnostic first wall (DFW) and its supporting diagnostic shield modules (DSM) are designed to protect front-end diagnostics from plasma neutron and plasma radiation, while providing apertures for diagnostic access to the plasma. The design of ITER port plug structures including the DFW and the DSM is largely driven by the electromagnetic loads included on the PP structural components during plasma major disruptions and the vertical displacement events (VDEs). Unlike DFW and DSM, the design of diagnostic system, however, is likely driven by the steady-state thermal loads from plasma volumetric and surface heating and the dynamic response of the in-port components attached to the port-specific DSM or closure plate under transient loads induced on the vacuum vessel and the port extension during asymmetric VDEs. Three tenant diagnostic systems are integrated into the equatorial port 09. The toroidal interferometer/polarimeter, or TIP system, is installed in the left drawer (DSM3, left looking from plasma) for measuring the plasma density so to control the fuel input. The electron cyclotron emission (ECE) system is installed in the middle drawer (DSM2) to provide the high spatial and temporal resolution measurements of electron temperature evolution and the electron thermal transport inferences. The visible/infrared wide angle viewing system is installed in the right drawer (DSM1) to provide visible and infrared viewing and temperature data of the first wall for its protection in support of machine operation. The port plug integration design and multiphysics analyses are performed following port integration requirements including the weight limit (45 tones total), shut down dose rate limits, the cooling/heating and structural integrity validation. Mass distribution for TIP and ECE DSMs has been optimized to minimize the total weight by a new design of the boron carbide shielding pocket. The lightened DSM maintains its front-end load distribution and the structural stiffness with minimum impact to the DFW so to better protect on-board diagnostics; while still provides sufficient front-end stiffness for its structural integrity as well as the diagnostics function requirements. |
doi_str_mv | 10.1109/TPS.2017.2788188 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8260567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8260567</ieee_id><sourcerecordid>10_1109_TPS_2017_2788188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-8b8a64179755e7af225887fb8c3b6c16985e8e769b02e1f2b08e642c990f113</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3Q9dT3ksnXsrRVCwWL7T5kYlIjdUaTcdF_b0uLq7s593I5hNwijBDBPK6XqxEDVCOmtEatz8gADTeV4UqckwGA4RXXyC_JVSmfAFgLYAMymYaSNi117Tsdt267K6nQZe42OZRCu0jn69kbnSa3abvSJ09nP7-u73JyW7rsck8fwFyTi-i2JdycckhWT7P15KVavD7PJ-NF5TlnfaUb7WSNyighgnKRMaG1io32vJEepdEi6KCkaYAFjKwBHWTNvDEQEfmQ3B9XDz9s8akP_sN3bRt8b7GWoLjZQ3CEfO5KySHa75y-XN5ZBHvwZPee7MGTPXnaV-6OlRRC-Mc1kyCk4n9qYmGN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Analysis Progress of ITER Diagnostic Equatorial Port #09</title><source>IEEE</source><creator>Zhai, Yuhu ; Basile, Allan ; Feder, R. ; Wang, W. ; Chen, Jingping ; Khodak, Andrei ; Klabacha, Jonathan Paul ; Johnson, D. ; Hause, M. ; Messineo, M. ; Zhang, Han ; Gonzalez-Teodoro, Jorge Rafael ; Guirao, Julio ; Iglesias, Silvia</creator><creatorcontrib>Zhai, Yuhu ; Basile, Allan ; Feder, R. ; Wang, W. ; Chen, Jingping ; Khodak, Andrei ; Klabacha, Jonathan Paul ; Johnson, D. ; Hause, M. ; Messineo, M. ; Zhang, Han ; Gonzalez-Teodoro, Jorge Rafael ; Guirao, Julio ; Iglesias, Silvia ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>ITER is the world's largest fusion device currently under construction in the South of France with >50 diagnostic systems to be installed inside the port plugs (PPs), the interspace (IS), or the port cell region of various diagnostic ports. The plasma facing diagnostic first wall (DFW) and its supporting diagnostic shield modules (DSM) are designed to protect front-end diagnostics from plasma neutron and plasma radiation, while providing apertures for diagnostic access to the plasma. The design of ITER port plug structures including the DFW and the DSM is largely driven by the electromagnetic loads included on the PP structural components during plasma major disruptions and the vertical displacement events (VDEs). Unlike DFW and DSM, the design of diagnostic system, however, is likely driven by the steady-state thermal loads from plasma volumetric and surface heating and the dynamic response of the in-port components attached to the port-specific DSM or closure plate under transient loads induced on the vacuum vessel and the port extension during asymmetric VDEs. Three tenant diagnostic systems are integrated into the equatorial port 09. The toroidal interferometer/polarimeter, or TIP system, is installed in the left drawer (DSM3, left looking from plasma) for measuring the plasma density so to control the fuel input. The electron cyclotron emission (ECE) system is installed in the middle drawer (DSM2) to provide the high spatial and temporal resolution measurements of electron temperature evolution and the electron thermal transport inferences. The visible/infrared wide angle viewing system is installed in the right drawer (DSM1) to provide visible and infrared viewing and temperature data of the first wall for its protection in support of machine operation. The port plug integration design and multiphysics analyses are performed following port integration requirements including the weight limit (45 tones total), shut down dose rate limits, the cooling/heating and structural integrity validation. Mass distribution for TIP and ECE DSMs has been optimized to minimize the total weight by a new design of the boron carbide shielding pocket. The lightened DSM maintains its front-end load distribution and the structural stiffness with minimum impact to the DFW so to better protect on-board diagnostics; while still provides sufficient front-end stiffness for its structural integrity as well as the diagnostics function requirements.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2017.2788188</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Analytical models ; Heating systems ; ITER diagnostics ; Load modeling ; multiphysics analysis ; Plasma temperature ; Plugs ; port plug integration ; Solid modeling</subject><ispartof>IEEE transactions on plasma science, 2018-05, Vol.46 (5), p.1254-1261</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-8b8a64179755e7af225887fb8c3b6c16985e8e769b02e1f2b08e642c990f113</citedby><cites>FETCH-LOGICAL-c332t-8b8a64179755e7af225887fb8c3b6c16985e8e769b02e1f2b08e642c990f113</cites><orcidid>0000-0001-6137-7897 ; 0000-0002-8273-6614 ; 0000-0003-1916-4999 ; 0000-0003-2777-2871 ; 0000000282736614 ; 0000000319164999 ; 0000000327772871 ; 0000000161377897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8260567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8260567$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1460739$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yuhu</creatorcontrib><creatorcontrib>Basile, Allan</creatorcontrib><creatorcontrib>Feder, R.</creatorcontrib><creatorcontrib>Wang, W.</creatorcontrib><creatorcontrib>Chen, Jingping</creatorcontrib><creatorcontrib>Khodak, Andrei</creatorcontrib><creatorcontrib>Klabacha, Jonathan Paul</creatorcontrib><creatorcontrib>Johnson, D.</creatorcontrib><creatorcontrib>Hause, M.</creatorcontrib><creatorcontrib>Messineo, M.</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gonzalez-Teodoro, Jorge Rafael</creatorcontrib><creatorcontrib>Guirao, Julio</creatorcontrib><creatorcontrib>Iglesias, Silvia</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Design and Analysis Progress of ITER Diagnostic Equatorial Port #09</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>ITER is the world's largest fusion device currently under construction in the South of France with >50 diagnostic systems to be installed inside the port plugs (PPs), the interspace (IS), or the port cell region of various diagnostic ports. The plasma facing diagnostic first wall (DFW) and its supporting diagnostic shield modules (DSM) are designed to protect front-end diagnostics from plasma neutron and plasma radiation, while providing apertures for diagnostic access to the plasma. The design of ITER port plug structures including the DFW and the DSM is largely driven by the electromagnetic loads included on the PP structural components during plasma major disruptions and the vertical displacement events (VDEs). Unlike DFW and DSM, the design of diagnostic system, however, is likely driven by the steady-state thermal loads from plasma volumetric and surface heating and the dynamic response of the in-port components attached to the port-specific DSM or closure plate under transient loads induced on the vacuum vessel and the port extension during asymmetric VDEs. Three tenant diagnostic systems are integrated into the equatorial port 09. The toroidal interferometer/polarimeter, or TIP system, is installed in the left drawer (DSM3, left looking from plasma) for measuring the plasma density so to control the fuel input. The electron cyclotron emission (ECE) system is installed in the middle drawer (DSM2) to provide the high spatial and temporal resolution measurements of electron temperature evolution and the electron thermal transport inferences. The visible/infrared wide angle viewing system is installed in the right drawer (DSM1) to provide visible and infrared viewing and temperature data of the first wall for its protection in support of machine operation. The port plug integration design and multiphysics analyses are performed following port integration requirements including the weight limit (45 tones total), shut down dose rate limits, the cooling/heating and structural integrity validation. Mass distribution for TIP and ECE DSMs has been optimized to minimize the total weight by a new design of the boron carbide shielding pocket. The lightened DSM maintains its front-end load distribution and the structural stiffness with minimum impact to the DFW so to better protect on-board diagnostics; while still provides sufficient front-end stiffness for its structural integrity as well as the diagnostics function requirements.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Analytical models</subject><subject>Heating systems</subject><subject>ITER diagnostics</subject><subject>Load modeling</subject><subject>multiphysics analysis</subject><subject>Plasma temperature</subject><subject>Plugs</subject><subject>port plug integration</subject><subject>Solid modeling</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3Q9dT3ksnXsrRVCwWL7T5kYlIjdUaTcdF_b0uLq7s593I5hNwijBDBPK6XqxEDVCOmtEatz8gADTeV4UqckwGA4RXXyC_JVSmfAFgLYAMymYaSNi117Tsdt267K6nQZe42OZRCu0jn69kbnSa3abvSJ09nP7-u73JyW7rsck8fwFyTi-i2JdycckhWT7P15KVavD7PJ-NF5TlnfaUb7WSNyighgnKRMaG1io32vJEepdEi6KCkaYAFjKwBHWTNvDEQEfmQ3B9XDz9s8akP_sN3bRt8b7GWoLjZQ3CEfO5KySHa75y-XN5ZBHvwZPee7MGTPXnaV-6OlRRC-Mc1kyCk4n9qYmGN</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Zhai, Yuhu</creator><creator>Basile, Allan</creator><creator>Feder, R.</creator><creator>Wang, W.</creator><creator>Chen, Jingping</creator><creator>Khodak, Andrei</creator><creator>Klabacha, Jonathan Paul</creator><creator>Johnson, D.</creator><creator>Hause, M.</creator><creator>Messineo, M.</creator><creator>Zhang, Han</creator><creator>Gonzalez-Teodoro, Jorge Rafael</creator><creator>Guirao, Julio</creator><creator>Iglesias, Silvia</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6137-7897</orcidid><orcidid>https://orcid.org/0000-0002-8273-6614</orcidid><orcidid>https://orcid.org/0000-0003-1916-4999</orcidid><orcidid>https://orcid.org/0000-0003-2777-2871</orcidid><orcidid>https://orcid.org/0000000282736614</orcidid><orcidid>https://orcid.org/0000000319164999</orcidid><orcidid>https://orcid.org/0000000327772871</orcidid><orcidid>https://orcid.org/0000000161377897</orcidid></search><sort><creationdate>20180501</creationdate><title>Design and Analysis Progress of ITER Diagnostic Equatorial Port #09</title><author>Zhai, Yuhu ; Basile, Allan ; Feder, R. ; Wang, W. ; Chen, Jingping ; Khodak, Andrei ; Klabacha, Jonathan Paul ; Johnson, D. ; Hause, M. ; Messineo, M. ; Zhang, Han ; Gonzalez-Teodoro, Jorge Rafael ; Guirao, Julio ; Iglesias, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-8b8a64179755e7af225887fb8c3b6c16985e8e769b02e1f2b08e642c990f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Analytical models</topic><topic>Heating systems</topic><topic>ITER diagnostics</topic><topic>Load modeling</topic><topic>multiphysics analysis</topic><topic>Plasma temperature</topic><topic>Plugs</topic><topic>port plug integration</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yuhu</creatorcontrib><creatorcontrib>Basile, Allan</creatorcontrib><creatorcontrib>Feder, R.</creatorcontrib><creatorcontrib>Wang, W.</creatorcontrib><creatorcontrib>Chen, Jingping</creatorcontrib><creatorcontrib>Khodak, Andrei</creatorcontrib><creatorcontrib>Klabacha, Jonathan Paul</creatorcontrib><creatorcontrib>Johnson, D.</creatorcontrib><creatorcontrib>Hause, M.</creatorcontrib><creatorcontrib>Messineo, M.</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Gonzalez-Teodoro, Jorge Rafael</creatorcontrib><creatorcontrib>Guirao, Julio</creatorcontrib><creatorcontrib>Iglesias, Silvia</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Yuhu</au><au>Basile, Allan</au><au>Feder, R.</au><au>Wang, W.</au><au>Chen, Jingping</au><au>Khodak, Andrei</au><au>Klabacha, Jonathan Paul</au><au>Johnson, D.</au><au>Hause, M.</au><au>Messineo, M.</au><au>Zhang, Han</au><au>Gonzalez-Teodoro, Jorge Rafael</au><au>Guirao, Julio</au><au>Iglesias, Silvia</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis Progress of ITER Diagnostic Equatorial Port #09</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>46</volume><issue>5</issue><spage>1254</spage><epage>1261</epage><pages>1254-1261</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>ITER is the world's largest fusion device currently under construction in the South of France with >50 diagnostic systems to be installed inside the port plugs (PPs), the interspace (IS), or the port cell region of various diagnostic ports. The plasma facing diagnostic first wall (DFW) and its supporting diagnostic shield modules (DSM) are designed to protect front-end diagnostics from plasma neutron and plasma radiation, while providing apertures for diagnostic access to the plasma. The design of ITER port plug structures including the DFW and the DSM is largely driven by the electromagnetic loads included on the PP structural components during plasma major disruptions and the vertical displacement events (VDEs). Unlike DFW and DSM, the design of diagnostic system, however, is likely driven by the steady-state thermal loads from plasma volumetric and surface heating and the dynamic response of the in-port components attached to the port-specific DSM or closure plate under transient loads induced on the vacuum vessel and the port extension during asymmetric VDEs. Three tenant diagnostic systems are integrated into the equatorial port 09. The toroidal interferometer/polarimeter, or TIP system, is installed in the left drawer (DSM3, left looking from plasma) for measuring the plasma density so to control the fuel input. The electron cyclotron emission (ECE) system is installed in the middle drawer (DSM2) to provide the high spatial and temporal resolution measurements of electron temperature evolution and the electron thermal transport inferences. The visible/infrared wide angle viewing system is installed in the right drawer (DSM1) to provide visible and infrared viewing and temperature data of the first wall for its protection in support of machine operation. The port plug integration design and multiphysics analyses are performed following port integration requirements including the weight limit (45 tones total), shut down dose rate limits, the cooling/heating and structural integrity validation. Mass distribution for TIP and ECE DSMs has been optimized to minimize the total weight by a new design of the boron carbide shielding pocket. The lightened DSM maintains its front-end load distribution and the structural stiffness with minimum impact to the DFW so to better protect on-board diagnostics; while still provides sufficient front-end stiffness for its structural integrity as well as the diagnostics function requirements.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TPS.2017.2788188</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6137-7897</orcidid><orcidid>https://orcid.org/0000-0002-8273-6614</orcidid><orcidid>https://orcid.org/0000-0003-1916-4999</orcidid><orcidid>https://orcid.org/0000-0003-2777-2871</orcidid><orcidid>https://orcid.org/0000000282736614</orcidid><orcidid>https://orcid.org/0000000319164999</orcidid><orcidid>https://orcid.org/0000000327772871</orcidid><orcidid>https://orcid.org/0000000161377897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2018-05, Vol.46 (5), p.1254-1261 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_8260567 |
source | IEEE |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Analytical models Heating systems ITER diagnostics Load modeling multiphysics analysis Plasma temperature Plugs port plug integration Solid modeling |
title | Design and Analysis Progress of ITER Diagnostic Equatorial Port #09 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20Progress%20of%20ITER%20Diagnostic%20Equatorial%20Port%20%2309&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Zhai,%20Yuhu&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2018-05-01&rft.volume=46&rft.issue=5&rft.spage=1254&rft.epage=1261&rft.pages=1254-1261&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2017.2788188&rft_dat=%3Ccrossref_RIE%3E10_1109_TPS_2017_2788188%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8260567&rfr_iscdi=true |