Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers

In this paper, we present a systematic methodology for realizing desired sheet impedances of printable metasurfaces. This methodology allows independent control of the sheet reactance (capacitance and series inductance) and its resistance, even if the conductor properties as well as the dielectric s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2018-03, Vol.66 (3), p.1340-1351
Hauptverfasser: Wang, Xu-chen, Diaz-Rubio, Ana, Sneck, Asko, Alastalo, Ari, Makela, Tapio, Ala-Laurinaho, Juha, Zheng, Jian-Fang, Raisanen, Antti V., Tretyakov, Sergei A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 3
container_start_page 1340
container_title IEEE transactions on antennas and propagation
container_volume 66
creator Wang, Xu-chen
Diaz-Rubio, Ana
Sneck, Asko
Alastalo, Ari
Makela, Tapio
Ala-Laurinaho, Juha
Zheng, Jian-Fang
Raisanen, Antti V.
Tretyakov, Sergei A.
description In this paper, we present a systematic methodology for realizing desired sheet impedances of printable metasurfaces. This methodology allows independent control of the sheet reactance (capacitance and series inductance) and its resistance, even if the conductor properties as well as the dielectric substrate thickness and permittivity are fixed due to manufacturing process restrictions. The derived analytical formulas allow us to easily find the physical dimensions of conductive patterns, which implement the required surface impedance. Numerical verification of the method shows excellent agreement with the analytical predictions, allowing the design of an arbitrary impedance without any optimization process. The method can be applied for designing lossy and low-loss metasurfaces, which can be used for absorption and wavefront manipulation of electromagnetic waves. As a representative example, the design of thin perfect absorbers has been approached using the developed method. The results demonstrate that the methodology adapts various material sheet resistivity, opening new possibilities for the design of printable metasurfaces, where the sheet resistivity of conductor strongly depends on the specific printing method. Finally, an experimental validation of absorbers designed for millimeter waves and printed using reverse-offset techniques is presented. To the best of our knowledge, this is the first time when reverse-offset printing has been used to provide well-working devices for short millimeter waves.
doi_str_mv 10.1109/TAP.2017.2783324
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8259265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8259265</ieee_id><sourcerecordid>10_1109_TAP_2017_2783324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-6fd1ac876bf5dcb690414bb8dbb5ff44d758918bfd8d04e106450ad8e58528e63</originalsourceid><addsrcrecordid>eNo9kEtrAjEURkNpodZ2X-gmfyA2ySQzme7EPkFRWvvYDcnkRlNGR5Io-O87onR1uXDOtzgI3TI6YIyW9_PhbMApKwa8UFnGxRnqMSkV4Zyzc9SjlClS8vznEl3F-Nu9QgnRQ5uPfUyw0snX-BGiX6xx6_As-HXSpgE8gaTjNjhdQ3zAX7rxtmPbNZ4vQ7tdLPE77CBEIFPnIqSjCRZPfNP4FSQI5FvvAA9NbIPpyGt04XQT4eZ0--jz-Wk-eiXj6cvbaDgmdUZlIrmzTNeqyI2TtjZ5SQUTxihrjHROCFtIVTJlnFWWCmA0F5Jqq0AqyRXkWR_R424d2hgDuGoT_EqHfcVodShWdcWqQ7HqVKxT7o6KB4B_XHHZdZPZH7oZafU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xu-chen ; Diaz-Rubio, Ana ; Sneck, Asko ; Alastalo, Ari ; Makela, Tapio ; Ala-Laurinaho, Juha ; Zheng, Jian-Fang ; Raisanen, Antti V. ; Tretyakov, Sergei A.</creator><creatorcontrib>Wang, Xu-chen ; Diaz-Rubio, Ana ; Sneck, Asko ; Alastalo, Ari ; Makela, Tapio ; Ala-Laurinaho, Juha ; Zheng, Jian-Fang ; Raisanen, Antti V. ; Tretyakov, Sergei A.</creatorcontrib><description>In this paper, we present a systematic methodology for realizing desired sheet impedances of printable metasurfaces. This methodology allows independent control of the sheet reactance (capacitance and series inductance) and its resistance, even if the conductor properties as well as the dielectric substrate thickness and permittivity are fixed due to manufacturing process restrictions. The derived analytical formulas allow us to easily find the physical dimensions of conductive patterns, which implement the required surface impedance. Numerical verification of the method shows excellent agreement with the analytical predictions, allowing the design of an arbitrary impedance without any optimization process. The method can be applied for designing lossy and low-loss metasurfaces, which can be used for absorption and wavefront manipulation of electromagnetic waves. As a representative example, the design of thin perfect absorbers has been approached using the developed method. The results demonstrate that the methodology adapts various material sheet resistivity, opening new possibilities for the design of printable metasurfaces, where the sheet resistivity of conductor strongly depends on the specific printing method. Finally, an experimental validation of absorbers designed for millimeter waves and printed using reverse-offset techniques is presented. To the best of our knowledge, this is the first time when reverse-offset printing has been used to provide well-working devices for short millimeter waves.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2017.2783324</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Absorbers ; Capacitance ; conductive layer ; Conductivity ; Dielectric substrates ; grid impedance ; Impedance ; impedance control ; Ink ; metasurfaces ; millimeter waves ; Permittivity ; Resistance ; reverse-offset printing</subject><ispartof>IEEE transactions on antennas and propagation, 2018-03, Vol.66 (3), p.1340-1351</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-6fd1ac876bf5dcb690414bb8dbb5ff44d758918bfd8d04e106450ad8e58528e63</citedby><cites>FETCH-LOGICAL-c305t-6fd1ac876bf5dcb690414bb8dbb5ff44d758918bfd8d04e106450ad8e58528e63</cites><orcidid>0000-0002-5997-1130 ; 0000-0003-4999-6956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8259265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8259265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xu-chen</creatorcontrib><creatorcontrib>Diaz-Rubio, Ana</creatorcontrib><creatorcontrib>Sneck, Asko</creatorcontrib><creatorcontrib>Alastalo, Ari</creatorcontrib><creatorcontrib>Makela, Tapio</creatorcontrib><creatorcontrib>Ala-Laurinaho, Juha</creatorcontrib><creatorcontrib>Zheng, Jian-Fang</creatorcontrib><creatorcontrib>Raisanen, Antti V.</creatorcontrib><creatorcontrib>Tretyakov, Sergei A.</creatorcontrib><title>Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this paper, we present a systematic methodology for realizing desired sheet impedances of printable metasurfaces. This methodology allows independent control of the sheet reactance (capacitance and series inductance) and its resistance, even if the conductor properties as well as the dielectric substrate thickness and permittivity are fixed due to manufacturing process restrictions. The derived analytical formulas allow us to easily find the physical dimensions of conductive patterns, which implement the required surface impedance. Numerical verification of the method shows excellent agreement with the analytical predictions, allowing the design of an arbitrary impedance without any optimization process. The method can be applied for designing lossy and low-loss metasurfaces, which can be used for absorption and wavefront manipulation of electromagnetic waves. As a representative example, the design of thin perfect absorbers has been approached using the developed method. The results demonstrate that the methodology adapts various material sheet resistivity, opening new possibilities for the design of printable metasurfaces, where the sheet resistivity of conductor strongly depends on the specific printing method. Finally, an experimental validation of absorbers designed for millimeter waves and printed using reverse-offset techniques is presented. To the best of our knowledge, this is the first time when reverse-offset printing has been used to provide well-working devices for short millimeter waves.</description><subject>Absorbers</subject><subject>Capacitance</subject><subject>conductive layer</subject><subject>Conductivity</subject><subject>Dielectric substrates</subject><subject>grid impedance</subject><subject>Impedance</subject><subject>impedance control</subject><subject>Ink</subject><subject>metasurfaces</subject><subject>millimeter waves</subject><subject>Permittivity</subject><subject>Resistance</subject><subject>reverse-offset printing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtrAjEURkNpodZ2X-gmfyA2ySQzme7EPkFRWvvYDcnkRlNGR5Io-O87onR1uXDOtzgI3TI6YIyW9_PhbMApKwa8UFnGxRnqMSkV4Zyzc9SjlClS8vznEl3F-Nu9QgnRQ5uPfUyw0snX-BGiX6xx6_As-HXSpgE8gaTjNjhdQ3zAX7rxtmPbNZ4vQ7tdLPE77CBEIFPnIqSjCRZPfNP4FSQI5FvvAA9NbIPpyGt04XQT4eZ0--jz-Wk-eiXj6cvbaDgmdUZlIrmzTNeqyI2TtjZ5SQUTxihrjHROCFtIVTJlnFWWCmA0F5Jqq0AqyRXkWR_R424d2hgDuGoT_EqHfcVodShWdcWqQ7HqVKxT7o6KB4B_XHHZdZPZH7oZafU</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wang, Xu-chen</creator><creator>Diaz-Rubio, Ana</creator><creator>Sneck, Asko</creator><creator>Alastalo, Ari</creator><creator>Makela, Tapio</creator><creator>Ala-Laurinaho, Juha</creator><creator>Zheng, Jian-Fang</creator><creator>Raisanen, Antti V.</creator><creator>Tretyakov, Sergei A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5997-1130</orcidid><orcidid>https://orcid.org/0000-0003-4999-6956</orcidid></search><sort><creationdate>201803</creationdate><title>Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers</title><author>Wang, Xu-chen ; Diaz-Rubio, Ana ; Sneck, Asko ; Alastalo, Ari ; Makela, Tapio ; Ala-Laurinaho, Juha ; Zheng, Jian-Fang ; Raisanen, Antti V. ; Tretyakov, Sergei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-6fd1ac876bf5dcb690414bb8dbb5ff44d758918bfd8d04e106450ad8e58528e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Capacitance</topic><topic>conductive layer</topic><topic>Conductivity</topic><topic>Dielectric substrates</topic><topic>grid impedance</topic><topic>Impedance</topic><topic>impedance control</topic><topic>Ink</topic><topic>metasurfaces</topic><topic>millimeter waves</topic><topic>Permittivity</topic><topic>Resistance</topic><topic>reverse-offset printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xu-chen</creatorcontrib><creatorcontrib>Diaz-Rubio, Ana</creatorcontrib><creatorcontrib>Sneck, Asko</creatorcontrib><creatorcontrib>Alastalo, Ari</creatorcontrib><creatorcontrib>Makela, Tapio</creatorcontrib><creatorcontrib>Ala-Laurinaho, Juha</creatorcontrib><creatorcontrib>Zheng, Jian-Fang</creatorcontrib><creatorcontrib>Raisanen, Antti V.</creatorcontrib><creatorcontrib>Tretyakov, Sergei A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xu-chen</au><au>Diaz-Rubio, Ana</au><au>Sneck, Asko</au><au>Alastalo, Ari</au><au>Makela, Tapio</au><au>Ala-Laurinaho, Juha</au><au>Zheng, Jian-Fang</au><au>Raisanen, Antti V.</au><au>Tretyakov, Sergei A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2018-03</date><risdate>2018</risdate><volume>66</volume><issue>3</issue><spage>1340</spage><epage>1351</epage><pages>1340-1351</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this paper, we present a systematic methodology for realizing desired sheet impedances of printable metasurfaces. This methodology allows independent control of the sheet reactance (capacitance and series inductance) and its resistance, even if the conductor properties as well as the dielectric substrate thickness and permittivity are fixed due to manufacturing process restrictions. The derived analytical formulas allow us to easily find the physical dimensions of conductive patterns, which implement the required surface impedance. Numerical verification of the method shows excellent agreement with the analytical predictions, allowing the design of an arbitrary impedance without any optimization process. The method can be applied for designing lossy and low-loss metasurfaces, which can be used for absorption and wavefront manipulation of electromagnetic waves. As a representative example, the design of thin perfect absorbers has been approached using the developed method. The results demonstrate that the methodology adapts various material sheet resistivity, opening new possibilities for the design of printable metasurfaces, where the sheet resistivity of conductor strongly depends on the specific printing method. Finally, an experimental validation of absorbers designed for millimeter waves and printed using reverse-offset techniques is presented. To the best of our knowledge, this is the first time when reverse-offset printing has been used to provide well-working devices for short millimeter waves.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2017.2783324</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5997-1130</orcidid><orcidid>https://orcid.org/0000-0003-4999-6956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2018-03, Vol.66 (3), p.1340-1351
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_8259265
source IEEE Electronic Library (IEL)
subjects Absorbers
Capacitance
conductive layer
Conductivity
Dielectric substrates
grid impedance
Impedance
impedance control
Ink
metasurfaces
millimeter waves
Permittivity
Resistance
reverse-offset printing
title Systematic Design of Printable Metasurfaces: Validation Through Reverse-Offset Printed Millimeter-Wave Absorbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Design%20of%20Printable%20Metasurfaces:%20Validation%20Through%20Reverse-Offset%20Printed%20Millimeter-Wave%20Absorbers&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wang,%20Xu-chen&rft.date=2018-03&rft.volume=66&rft.issue=3&rft.spage=1340&rft.epage=1351&rft.pages=1340-1351&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2017.2783324&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_2017_2783324%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8259265&rfr_iscdi=true