A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks
The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-05, Vol.56 (5), p.2554-2564 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2564 |
---|---|
container_issue | 5 |
container_start_page | 2554 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Najoui, Zhour Riazanoff, Serge Deffontaines, Benoit Xavier, Jean-Paul |
description | The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks. |
doi_str_mv | 10.1109/TGRS.2017.2760516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8254380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254380</ieee_id><sourcerecordid>2174518255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEuXnARAXS5xTbCd27GMopSAVFTXlHG2cDQTSpNjugbcnoYjTaqSZWc1HyBVnU86Zud0s1vlUMJ5ORaqY5OqITLiUOmIqSY7JhHGjIqGNOCVn3n8wxhPJ0wnZZzQPEBofGgstzXY714N9p6GnLw4HYdF7Cl1F5907dBbpLLobZZ6t6dMW3tDTpqMrV6EbQ_cY0Aaa7UO_hd_O9ps-g2s6pKumpXnb2E9_QU5qaD1e_t1z8vow38weo-Vq8TTLlpEVJg5RWenSpkoBYKpVxXmJ8TBWVrXRxthag8DSGNQ1SFYJYNJyK6E0KlUlcBmfk5tD7zDka48-FB_93nXDy0LwdCCghRxd_OCyrvfeYV3sXLMF911wVox0i5FuMdIt_ugOmetDpkHEf_9Ql8SaxT-xhHYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174518255</pqid></control><display><type>article</type><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><source>IEEE Electronic Library (IEL)</source><creator>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</creator><creatorcontrib>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</creatorcontrib><description>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2760516</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Brightness ; C band ; C-band MODel (CMOD) ; Caspian Sea ; Cleaning ; Cleaning process ; Detection ; Heterogeneity ; Image detection ; Image enhancement ; Incidence angle ; local stretching ; Methods ; Morphology ; Ocean temperature ; oil slick ; Oil slicks ; Oils ; Preprocessing ; Radar ; Radar imaging ; Removal ; Santa Barbara ; SAR (radar) ; Sea surface ; segmentation ; Signal reflection ; Slicks ; Surface waves ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Temperature (air-sea) ; Training ; West Africa ; Wind direction ; Wind effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-05, Vol.56 (5), p.2554-2564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</citedby><cites>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</cites><orcidid>0000-0003-3944-2829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Najoui, Zhour</creatorcontrib><creatorcontrib>Riazanoff, Serge</creatorcontrib><creatorcontrib>Deffontaines, Benoit</creatorcontrib><creatorcontrib>Xavier, Jean-Paul</creatorcontrib><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</description><subject>Adaptation</subject><subject>Brightness</subject><subject>C band</subject><subject>C-band MODel (CMOD)</subject><subject>Caspian Sea</subject><subject>Cleaning</subject><subject>Cleaning process</subject><subject>Detection</subject><subject>Heterogeneity</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Incidence angle</subject><subject>local stretching</subject><subject>Methods</subject><subject>Morphology</subject><subject>Ocean temperature</subject><subject>oil slick</subject><subject>Oil slicks</subject><subject>Oils</subject><subject>Preprocessing</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Removal</subject><subject>Santa Barbara</subject><subject>SAR (radar)</subject><subject>Sea surface</subject><subject>segmentation</subject><subject>Signal reflection</subject><subject>Slicks</subject><subject>Surface waves</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Temperature (air-sea)</subject><subject>Training</subject><subject>West Africa</subject><subject>Wind direction</subject><subject>Wind effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEuXnARAXS5xTbCd27GMopSAVFTXlHG2cDQTSpNjugbcnoYjTaqSZWc1HyBVnU86Zud0s1vlUMJ5ORaqY5OqITLiUOmIqSY7JhHGjIqGNOCVn3n8wxhPJ0wnZZzQPEBofGgstzXY714N9p6GnLw4HYdF7Cl1F5907dBbpLLobZZ6t6dMW3tDTpqMrV6EbQ_cY0Aaa7UO_hd_O9ps-g2s6pKumpXnb2E9_QU5qaD1e_t1z8vow38weo-Vq8TTLlpEVJg5RWenSpkoBYKpVxXmJ8TBWVrXRxthag8DSGNQ1SFYJYNJyK6E0KlUlcBmfk5tD7zDka48-FB_93nXDy0LwdCCghRxd_OCyrvfeYV3sXLMF911wVox0i5FuMdIt_ugOmetDpkHEf_9Ql8SaxT-xhHYW</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Najoui, Zhour</creator><creator>Riazanoff, Serge</creator><creator>Deffontaines, Benoit</creator><creator>Xavier, Jean-Paul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3944-2829</orcidid></search><sort><creationdate>20180501</creationdate><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><author>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Brightness</topic><topic>C band</topic><topic>C-band MODel (CMOD)</topic><topic>Caspian Sea</topic><topic>Cleaning</topic><topic>Cleaning process</topic><topic>Detection</topic><topic>Heterogeneity</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Incidence angle</topic><topic>local stretching</topic><topic>Methods</topic><topic>Morphology</topic><topic>Ocean temperature</topic><topic>oil slick</topic><topic>Oil slicks</topic><topic>Oils</topic><topic>Preprocessing</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Removal</topic><topic>Santa Barbara</topic><topic>SAR (radar)</topic><topic>Sea surface</topic><topic>segmentation</topic><topic>Signal reflection</topic><topic>Slicks</topic><topic>Surface waves</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Temperature (air-sea)</topic><topic>Training</topic><topic>West Africa</topic><topic>Wind direction</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najoui, Zhour</creatorcontrib><creatorcontrib>Riazanoff, Serge</creatorcontrib><creatorcontrib>Deffontaines, Benoit</creatorcontrib><creatorcontrib>Xavier, Jean-Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najoui, Zhour</au><au>Riazanoff, Serge</au><au>Deffontaines, Benoit</au><au>Xavier, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>56</volume><issue>5</issue><spage>2554</spage><epage>2564</epage><pages>2554-2564</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2760516</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3944-2829</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-05, Vol.56 (5), p.2554-2564 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_8254380 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Brightness C band C-band MODel (CMOD) Caspian Sea Cleaning Cleaning process Detection Heterogeneity Image detection Image enhancement Incidence angle local stretching Methods Morphology Ocean temperature oil slick Oil slicks Oils Preprocessing Radar Radar imaging Removal Santa Barbara SAR (radar) Sea surface segmentation Signal reflection Slicks Surface waves Synthetic aperture radar synthetic aperture radar (SAR) Temperature (air-sea) Training West Africa Wind direction Wind effects |
title | A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Approach%20to%20Preprocess%20and%20Enhance%20C-Band%20SAR%20Images%20in%20Order%20to%20Detect%20Automatically%20Marine%20Oil%20Slicks&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Najoui,%20Zhour&rft.date=2018-05-01&rft.volume=56&rft.issue=5&rft.spage=2554&rft.epage=2564&rft.pages=2554-2564&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2760516&rft_dat=%3Cproquest_RIE%3E2174518255%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174518255&rft_id=info:pmid/&rft_ieee_id=8254380&rfr_iscdi=true |