A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks

The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-05, Vol.56 (5), p.2554-2564
Hauptverfasser: Najoui, Zhour, Riazanoff, Serge, Deffontaines, Benoit, Xavier, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2564
container_issue 5
container_start_page 2554
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Najoui, Zhour
Riazanoff, Serge
Deffontaines, Benoit
Xavier, Jean-Paul
description The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.
doi_str_mv 10.1109/TGRS.2017.2760516
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8254380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254380</ieee_id><sourcerecordid>2174518255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEuXnARAXS5xTbCd27GMopSAVFTXlHG2cDQTSpNjugbcnoYjTaqSZWc1HyBVnU86Zud0s1vlUMJ5ORaqY5OqITLiUOmIqSY7JhHGjIqGNOCVn3n8wxhPJ0wnZZzQPEBofGgstzXY714N9p6GnLw4HYdF7Cl1F5907dBbpLLobZZ6t6dMW3tDTpqMrV6EbQ_cY0Aaa7UO_hd_O9ps-g2s6pKumpXnb2E9_QU5qaD1e_t1z8vow38weo-Vq8TTLlpEVJg5RWenSpkoBYKpVxXmJ8TBWVrXRxthag8DSGNQ1SFYJYNJyK6E0KlUlcBmfk5tD7zDka48-FB_93nXDy0LwdCCghRxd_OCyrvfeYV3sXLMF911wVox0i5FuMdIt_ugOmetDpkHEf_9Ql8SaxT-xhHYW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174518255</pqid></control><display><type>article</type><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><source>IEEE Electronic Library (IEL)</source><creator>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</creator><creatorcontrib>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</creatorcontrib><description>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2760516</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Brightness ; C band ; C-band MODel (CMOD) ; Caspian Sea ; Cleaning ; Cleaning process ; Detection ; Heterogeneity ; Image detection ; Image enhancement ; Incidence angle ; local stretching ; Methods ; Morphology ; Ocean temperature ; oil slick ; Oil slicks ; Oils ; Preprocessing ; Radar ; Radar imaging ; Removal ; Santa Barbara ; SAR (radar) ; Sea surface ; segmentation ; Signal reflection ; Slicks ; Surface waves ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Temperature (air-sea) ; Training ; West Africa ; Wind direction ; Wind effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-05, Vol.56 (5), p.2554-2564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</citedby><cites>FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</cites><orcidid>0000-0003-3944-2829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254380$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Najoui, Zhour</creatorcontrib><creatorcontrib>Riazanoff, Serge</creatorcontrib><creatorcontrib>Deffontaines, Benoit</creatorcontrib><creatorcontrib>Xavier, Jean-Paul</creatorcontrib><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</description><subject>Adaptation</subject><subject>Brightness</subject><subject>C band</subject><subject>C-band MODel (CMOD)</subject><subject>Caspian Sea</subject><subject>Cleaning</subject><subject>Cleaning process</subject><subject>Detection</subject><subject>Heterogeneity</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Incidence angle</subject><subject>local stretching</subject><subject>Methods</subject><subject>Morphology</subject><subject>Ocean temperature</subject><subject>oil slick</subject><subject>Oil slicks</subject><subject>Oils</subject><subject>Preprocessing</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Removal</subject><subject>Santa Barbara</subject><subject>SAR (radar)</subject><subject>Sea surface</subject><subject>segmentation</subject><subject>Signal reflection</subject><subject>Slicks</subject><subject>Surface waves</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Temperature (air-sea)</subject><subject>Training</subject><subject>West Africa</subject><subject>Wind direction</subject><subject>Wind effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEuXnARAXS5xTbCd27GMopSAVFTXlHG2cDQTSpNjugbcnoYjTaqSZWc1HyBVnU86Zud0s1vlUMJ5ORaqY5OqITLiUOmIqSY7JhHGjIqGNOCVn3n8wxhPJ0wnZZzQPEBofGgstzXY714N9p6GnLw4HYdF7Cl1F5907dBbpLLobZZ6t6dMW3tDTpqMrV6EbQ_cY0Aaa7UO_hd_O9ps-g2s6pKumpXnb2E9_QU5qaD1e_t1z8vow38weo-Vq8TTLlpEVJg5RWenSpkoBYKpVxXmJ8TBWVrXRxthag8DSGNQ1SFYJYNJyK6E0KlUlcBmfk5tD7zDka48-FB_93nXDy0LwdCCghRxd_OCyrvfeYV3sXLMF911wVox0i5FuMdIt_ugOmetDpkHEf_9Ql8SaxT-xhHYW</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Najoui, Zhour</creator><creator>Riazanoff, Serge</creator><creator>Deffontaines, Benoit</creator><creator>Xavier, Jean-Paul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3944-2829</orcidid></search><sort><creationdate>20180501</creationdate><title>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</title><author>Najoui, Zhour ; Riazanoff, Serge ; Deffontaines, Benoit ; Xavier, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bd8bc766aae786d11be31095df9899cf8a2eb99e8fa50d2a05c1c5ab9676ba153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Brightness</topic><topic>C band</topic><topic>C-band MODel (CMOD)</topic><topic>Caspian Sea</topic><topic>Cleaning</topic><topic>Cleaning process</topic><topic>Detection</topic><topic>Heterogeneity</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Incidence angle</topic><topic>local stretching</topic><topic>Methods</topic><topic>Morphology</topic><topic>Ocean temperature</topic><topic>oil slick</topic><topic>Oil slicks</topic><topic>Oils</topic><topic>Preprocessing</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Removal</topic><topic>Santa Barbara</topic><topic>SAR (radar)</topic><topic>Sea surface</topic><topic>segmentation</topic><topic>Signal reflection</topic><topic>Slicks</topic><topic>Surface waves</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Temperature (air-sea)</topic><topic>Training</topic><topic>West Africa</topic><topic>Wind direction</topic><topic>Wind effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najoui, Zhour</creatorcontrib><creatorcontrib>Riazanoff, Serge</creatorcontrib><creatorcontrib>Deffontaines, Benoit</creatorcontrib><creatorcontrib>Xavier, Jean-Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Najoui, Zhour</au><au>Riazanoff, Serge</au><au>Deffontaines, Benoit</au><au>Xavier, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>56</volume><issue>5</issue><spage>2554</spage><epage>2564</epage><pages>2554-2564</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The aim of this paper was to propose a new methodology for preprocessing and enhancing C-band synthetic aperture radar (SAR) images for the automatic detection of marine oil slicks. The proposed methodology includes three processing levels: preprocessing, thresholding, and binary cleaning. The first level is to correct the heterogeneity of brightness in SAR images caused by the non-Lambertian reflection of the radar signal on the sea surface. This heterogeneity can be justified by: the distance from the nadir (incidence angle effect), the interaction between wind direction and radar pulse, and the wide swath mode. The second level consists of a thresholding step. The third level is to clean the binary output images from noise residues. Several preprocessing and cleaning methods have been tested and evaluated by a qualification engine that compares the automatically detected patches with a training data set of manually detected dark patches. The training data set includes oil slicks and lookalikes. As a result, the "best" preprocessing method that homogenizes the brightness of C-band SAR scenes and optimizes the automatic detection of marine oil slicks is based on an adaptation to the C-band MODel. As for the cleaning process, the tested morphological methods show that small object removal followed by a morphological closing optimizes the automatic detection of marine oil slicks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2760516</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3944-2829</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-05, Vol.56 (5), p.2554-2564
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_8254380
source IEEE Electronic Library (IEL)
subjects Adaptation
Brightness
C band
C-band MODel (CMOD)
Caspian Sea
Cleaning
Cleaning process
Detection
Heterogeneity
Image detection
Image enhancement
Incidence angle
local stretching
Methods
Morphology
Ocean temperature
oil slick
Oil slicks
Oils
Preprocessing
Radar
Radar imaging
Removal
Santa Barbara
SAR (radar)
Sea surface
segmentation
Signal reflection
Slicks
Surface waves
Synthetic aperture radar
synthetic aperture radar (SAR)
Temperature (air-sea)
Training
West Africa
Wind direction
Wind effects
title A Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to Detect Automatically Marine Oil Slicks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Approach%20to%20Preprocess%20and%20Enhance%20C-Band%20SAR%20Images%20in%20Order%20to%20Detect%20Automatically%20Marine%20Oil%20Slicks&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Najoui,%20Zhour&rft.date=2018-05-01&rft.volume=56&rft.issue=5&rft.spage=2554&rft.epage=2564&rft.pages=2554-2564&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2760516&rft_dat=%3Cproquest_RIE%3E2174518255%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174518255&rft_id=info:pmid/&rft_ieee_id=8254380&rfr_iscdi=true