Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies

Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2018-06, Vol.13 (6), p.1446-1459
Hauptverfasser: Hou, Elizabeth, Sricharan, Kumar, Hero, Alfred O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1459
container_issue 6
container_start_page 1446
container_title IEEE transactions on information forensics and security
container_volume 13
creator Hou, Elizabeth
Sricharan, Kumar
Hero, Alfred O.
description Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.
doi_str_mv 10.1109/TIFS.2018.2790580
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8248782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8248782</ieee_id><sourcerecordid>10_1109_TIFS_2018_2790580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJvnfmNkmTPo79cYOKD274WNI0dZEuGU0E9-1t3djTvRfOuZzzQ-gRyASA5C-b9fJjkhKQk1TkhEtyhUbAeZZkJIXryw70Ft2F8E0IY5DJEfosVDQu4kIdWqWtcvhN_dr9zx4vXOz84YjnNujO7q1T0XqHG9_huYlG_1--wSv7tUu20bY2HvHU-b1qrQn36KZRbTAP5zlG2-ViM1slxfvrejYtEk0pj4nOTW4kSyuhmDQVCEGqitR5DjpTmioDqRC8ooJlJOeQCdaw2tTNYKhpbegYPZ_--hBtGbTtk-20d64PWAIHLmnWi-Ak0p0PoTNNeegbqe5YAikHfOWArxzwlWd8vefp5LHGmItepkwKmdI_oB9snA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><source>IEEE Electronic Library (IEL)</source><creator>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O.</creator><creatorcontrib>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O. ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2790580</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anomaly detection ; Classification algorithms ; Entropy ; Laplace equations ; Linear programming ; maximum entropy ; maximum margin classifier ; Probabilistic logic ; semi-supervised classification ; Support vector machines</subject><ispartof>IEEE transactions on information forensics and security, 2018-06, Vol.13 (6), p.1446-1459</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</citedby><cites>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</cites><orcidid>0000-0002-8100-6206 ; 0000000281006206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8248782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8248782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Elizabeth</creatorcontrib><creatorcontrib>Sricharan, Kumar</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</description><subject>Anomaly detection</subject><subject>Classification algorithms</subject><subject>Entropy</subject><subject>Laplace equations</subject><subject>Linear programming</subject><subject>maximum entropy</subject><subject>maximum margin classifier</subject><subject>Probabilistic logic</subject><subject>semi-supervised classification</subject><subject>Support vector machines</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJvnfmNkmTPo79cYOKD274WNI0dZEuGU0E9-1t3djTvRfOuZzzQ-gRyASA5C-b9fJjkhKQk1TkhEtyhUbAeZZkJIXryw70Ft2F8E0IY5DJEfosVDQu4kIdWqWtcvhN_dr9zx4vXOz84YjnNujO7q1T0XqHG9_huYlG_1--wSv7tUu20bY2HvHU-b1qrQn36KZRbTAP5zlG2-ViM1slxfvrejYtEk0pj4nOTW4kSyuhmDQVCEGqitR5DjpTmioDqRC8ooJlJOeQCdaw2tTNYKhpbegYPZ_--hBtGbTtk-20d64PWAIHLmnWi-Ak0p0PoTNNeegbqe5YAikHfOWArxzwlWd8vefp5LHGmItepkwKmdI_oB9snA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hou, Elizabeth</creator><creator>Sricharan, Kumar</creator><creator>Hero, Alfred O.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8100-6206</orcidid><orcidid>https://orcid.org/0000000281006206</orcidid></search><sort><creationdate>20180601</creationdate><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><author>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomaly detection</topic><topic>Classification algorithms</topic><topic>Entropy</topic><topic>Laplace equations</topic><topic>Linear programming</topic><topic>maximum entropy</topic><topic>maximum margin classifier</topic><topic>Probabilistic logic</topic><topic>semi-supervised classification</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Elizabeth</creatorcontrib><creatorcontrib>Sricharan, Kumar</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Elizabeth</au><au>Sricharan, Kumar</au><au>Hero, Alfred O.</au><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>1446</spage><epage>1459</epage><pages>1446-1459</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2790580</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8100-6206</orcidid><orcidid>https://orcid.org/0000000281006206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2018-06, Vol.13 (6), p.1446-1459
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_8248782
source IEEE Electronic Library (IEL)
subjects Anomaly detection
Classification algorithms
Entropy
Laplace equations
Linear programming
maximum entropy
maximum margin classifier
Probabilistic logic
semi-supervised classification
Support vector machines
title Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20Laplacian%20Maximum%20Entropy%20Discrimination%20for%20Detection%20of%20High-Utility%20Anomalies&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Hou,%20Elizabeth&rft.aucorp=Univ.%20of%20Michigan,%20Ann%20Arbor,%20MI%20(United%20States)&rft.date=2018-06-01&rft.volume=13&rft.issue=6&rft.spage=1446&rft.epage=1459&rft.pages=1446-1459&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2790580&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2018_2790580%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8248782&rfr_iscdi=true