Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies
Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances tha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2018-06, Vol.13 (6), p.1446-1459 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1459 |
---|---|
container_issue | 6 |
container_start_page | 1446 |
container_title | IEEE transactions on information forensics and security |
container_volume | 13 |
creator | Hou, Elizabeth Sricharan, Kumar Hero, Alfred O. |
description | Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying. |
doi_str_mv | 10.1109/TIFS.2018.2790580 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8248782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8248782</ieee_id><sourcerecordid>10_1109_TIFS_2018_2790580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJvnfmNkmTPo79cYOKD274WNI0dZEuGU0E9-1t3djTvRfOuZzzQ-gRyASA5C-b9fJjkhKQk1TkhEtyhUbAeZZkJIXryw70Ft2F8E0IY5DJEfosVDQu4kIdWqWtcvhN_dr9zx4vXOz84YjnNujO7q1T0XqHG9_huYlG_1--wSv7tUu20bY2HvHU-b1qrQn36KZRbTAP5zlG2-ViM1slxfvrejYtEk0pj4nOTW4kSyuhmDQVCEGqitR5DjpTmioDqRC8ooJlJOeQCdaw2tTNYKhpbegYPZ_--hBtGbTtk-20d64PWAIHLmnWi-Ak0p0PoTNNeegbqe5YAikHfOWArxzwlWd8vefp5LHGmItepkwKmdI_oB9snA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><source>IEEE Electronic Library (IEL)</source><creator>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O.</creator><creatorcontrib>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O. ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2790580</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anomaly detection ; Classification algorithms ; Entropy ; Laplace equations ; Linear programming ; maximum entropy ; maximum margin classifier ; Probabilistic logic ; semi-supervised classification ; Support vector machines</subject><ispartof>IEEE transactions on information forensics and security, 2018-06, Vol.13 (6), p.1446-1459</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</citedby><cites>FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</cites><orcidid>0000-0002-8100-6206 ; 0000000281006206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8248782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8248782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Elizabeth</creatorcontrib><creatorcontrib>Sricharan, Kumar</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</description><subject>Anomaly detection</subject><subject>Classification algorithms</subject><subject>Entropy</subject><subject>Laplace equations</subject><subject>Linear programming</subject><subject>maximum entropy</subject><subject>maximum margin classifier</subject><subject>Probabilistic logic</subject><subject>semi-supervised classification</subject><subject>Support vector machines</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJvnfmNkmTPo79cYOKD274WNI0dZEuGU0E9-1t3djTvRfOuZzzQ-gRyASA5C-b9fJjkhKQk1TkhEtyhUbAeZZkJIXryw70Ft2F8E0IY5DJEfosVDQu4kIdWqWtcvhN_dr9zx4vXOz84YjnNujO7q1T0XqHG9_huYlG_1--wSv7tUu20bY2HvHU-b1qrQn36KZRbTAP5zlG2-ViM1slxfvrejYtEk0pj4nOTW4kSyuhmDQVCEGqitR5DjpTmioDqRC8ooJlJOeQCdaw2tTNYKhpbegYPZ_--hBtGbTtk-20d64PWAIHLmnWi-Ak0p0PoTNNeegbqe5YAikHfOWArxzwlWd8vefp5LHGmItepkwKmdI_oB9snA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hou, Elizabeth</creator><creator>Sricharan, Kumar</creator><creator>Hero, Alfred O.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8100-6206</orcidid><orcidid>https://orcid.org/0000000281006206</orcidid></search><sort><creationdate>20180601</creationdate><title>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</title><author>Hou, Elizabeth ; Sricharan, Kumar ; Hero, Alfred O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-c9e9e842b7a48eb1770bb0d991c6ac3ae12775b37460951674f4dedf2b7ad3de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomaly detection</topic><topic>Classification algorithms</topic><topic>Entropy</topic><topic>Laplace equations</topic><topic>Linear programming</topic><topic>maximum entropy</topic><topic>maximum margin classifier</topic><topic>Probabilistic logic</topic><topic>semi-supervised classification</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Elizabeth</creatorcontrib><creatorcontrib>Sricharan, Kumar</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Elizabeth</au><au>Sricharan, Kumar</au><au>Hero, Alfred O.</au><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>1446</spage><epage>1459</epage><pages>1446-1459</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Data-driven anomaly detection methods suffer from the drawback of detecting all instances that are statistically rare, irrespective of whether the detected instances have real-world significance or not. In this paper, we are interested in the problem of specifically detecting anomalous instances that are known to have high real-world utility, while ignoring the low-utility statistically anomalous instances. To this end, we propose a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution. This method uses the Entropy Minimization (EM) algorithm to simultaneously incorporate the Geometric EM principle for identifying statistical anomalies, and the MED principle to incorporate utility labels, in order to detect high-utility anomalies. We apply our method in both simulated and real datasets to demonstrate that it has superior performance over existing alternatives that independently pre-process with unsupervised anomaly detection algorithms before classifying.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2790580</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8100-6206</orcidid><orcidid>https://orcid.org/0000000281006206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2018-06, Vol.13 (6), p.1446-1459 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_8248782 |
source | IEEE Electronic Library (IEL) |
subjects | Anomaly detection Classification algorithms Entropy Laplace equations Linear programming maximum entropy maximum margin classifier Probabilistic logic semi-supervised classification Support vector machines |
title | Latent Laplacian Maximum Entropy Discrimination for Detection of High-Utility Anomalies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20Laplacian%20Maximum%20Entropy%20Discrimination%20for%20Detection%20of%20High-Utility%20Anomalies&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Hou,%20Elizabeth&rft.aucorp=Univ.%20of%20Michigan,%20Ann%20Arbor,%20MI%20(United%20States)&rft.date=2018-06-01&rft.volume=13&rft.issue=6&rft.spage=1446&rft.epage=1459&rft.pages=1446-1459&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2790580&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2018_2790580%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8248782&rfr_iscdi=true |