Remote Sensing Image Registration Using Convolutional Neural Network Features

Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.232-236
Hauptverfasser: Ye, Famao, Su, Yanfei, Xiao, Hui, Zhao, Xuqing, Min, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 232
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Ye, Famao
Su, Yanfei
Xiao, Hui
Zhao, Xuqing
Min, Weidong
description Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.
doi_str_mv 10.1109/LGRS.2017.2781741
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8245905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8245905</ieee_id><sourcerecordid>2174546717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1SZMleZTh5mAqbA58C0l7GZ1bM5NW8b-33YZP33H3fcfdD6FbgjNCsHqYTxfLjGIiMiokEYycoQHhXKaYC3Le14ynXMmPS3QV4wZjyqQUA_SygJ1vIFlCHat6ncx2Zg3JAtZVbIJpKl8nq8Ng7Otvv237jtkmr9CGgzQ_PnwmEzBNGyBeowtnthFuTjpEq8nT-_g5nb9NZ-PHeVpQlTepLVXBHXBLHSsVYzJnYkSddSXFzJK8NFxIWxArwXJJuRWWFspBWShliWL5EN0f9-6D_2ohNnrj29AdFjXtnudsJIjoXOToKoKPMYDT-1DtTPjVBOuemu6p6Z6aPlHrMnfHTAUA_35JGVeY53_a_2nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546717</pqid></control><display><type>article</type><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</creator><creatorcontrib>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</creatorcontrib><description>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2781741</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolutional neural network (CNN) ; Detection ; Feature extraction ; Image classification ; Image registration ; Levels ; Methods ; Neural networks ; Registers ; Registration ; Remote sensing ; remote sensing image registration ; Robustness ; scale-invariant feature transform (SIFT) ; State of the art ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.232-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</citedby><cites>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</cites><orcidid>0000-0003-0732-6495 ; 0000-0003-2526-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8245905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8245905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Famao</creatorcontrib><creatorcontrib>Su, Yanfei</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhao, Xuqing</creatorcontrib><creatorcontrib>Min, Weidong</creatorcontrib><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</description><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image registration</subject><subject>Levels</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Registers</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>remote sensing image registration</subject><subject>Robustness</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>State of the art</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1SZMleZTh5mAqbA58C0l7GZ1bM5NW8b-33YZP33H3fcfdD6FbgjNCsHqYTxfLjGIiMiokEYycoQHhXKaYC3Le14ynXMmPS3QV4wZjyqQUA_SygJ1vIFlCHat6ncx2Zg3JAtZVbIJpKl8nq8Ng7Otvv237jtkmr9CGgzQ_PnwmEzBNGyBeowtnthFuTjpEq8nT-_g5nb9NZ-PHeVpQlTepLVXBHXBLHSsVYzJnYkSddSXFzJK8NFxIWxArwXJJuRWWFspBWShliWL5EN0f9-6D_2ohNnrj29AdFjXtnudsJIjoXOToKoKPMYDT-1DtTPjVBOuemu6p6Z6aPlHrMnfHTAUA_35JGVeY53_a_2nQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Ye, Famao</creator><creator>Su, Yanfei</creator><creator>Xiao, Hui</creator><creator>Zhao, Xuqing</creator><creator>Min, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0732-6495</orcidid><orcidid>https://orcid.org/0000-0003-2526-2181</orcidid></search><sort><creationdate>20180201</creationdate><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><author>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image registration</topic><topic>Levels</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Registers</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>remote sensing image registration</topic><topic>Robustness</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>State of the art</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Famao</creatorcontrib><creatorcontrib>Su, Yanfei</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhao, Xuqing</creatorcontrib><creatorcontrib>Min, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Famao</au><au>Su, Yanfei</au><au>Xiao, Hui</au><au>Zhao, Xuqing</au><au>Min, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Sensing Image Registration Using Convolutional Neural Network Features</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>232</spage><epage>236</epage><pages>232-236</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2781741</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0732-6495</orcidid><orcidid>https://orcid.org/0000-0003-2526-2181</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.232-236
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8245905
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Convolutional neural network (CNN)
Detection
Feature extraction
Image classification
Image registration
Levels
Methods
Neural networks
Registers
Registration
Remote sensing
remote sensing image registration
Robustness
scale-invariant feature transform (SIFT)
State of the art
Transforms
title Remote Sensing Image Registration Using Convolutional Neural Network Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Sensing%20Image%20Registration%20Using%20Convolutional%20Neural%20Network%20Features&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ye,%20Famao&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=232&rft.epage=236&rft.pages=232-236&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2781741&rft_dat=%3Cproquest_RIE%3E2174546717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546717&rft_id=info:pmid/&rft_ieee_id=8245905&rfr_iscdi=true