Remote Sensing Image Registration Using Convolutional Neural Network Features
Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, a...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2018-02, Vol.15 (2), p.232-236 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 232 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Ye, Famao Su, Yanfei Xiao, Hui Zhao, Xuqing Min, Weidong |
description | Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences. |
doi_str_mv | 10.1109/LGRS.2017.2781741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8245905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8245905</ieee_id><sourcerecordid>2174546717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1SZMleZTh5mAqbA58C0l7GZ1bM5NW8b-33YZP33H3fcfdD6FbgjNCsHqYTxfLjGIiMiokEYycoQHhXKaYC3Le14ynXMmPS3QV4wZjyqQUA_SygJ1vIFlCHat6ncx2Zg3JAtZVbIJpKl8nq8Ng7Otvv237jtkmr9CGgzQ_PnwmEzBNGyBeowtnthFuTjpEq8nT-_g5nb9NZ-PHeVpQlTepLVXBHXBLHSsVYzJnYkSddSXFzJK8NFxIWxArwXJJuRWWFspBWShliWL5EN0f9-6D_2ohNnrj29AdFjXtnudsJIjoXOToKoKPMYDT-1DtTPjVBOuemu6p6Z6aPlHrMnfHTAUA_35JGVeY53_a_2nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174546717</pqid></control><display><type>article</type><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</creator><creatorcontrib>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</creatorcontrib><description>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2781741</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolutional neural network (CNN) ; Detection ; Feature extraction ; Image classification ; Image registration ; Levels ; Methods ; Neural networks ; Registers ; Registration ; Remote sensing ; remote sensing image registration ; Robustness ; scale-invariant feature transform (SIFT) ; State of the art ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.232-236</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</citedby><cites>FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</cites><orcidid>0000-0003-0732-6495 ; 0000-0003-2526-2181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8245905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8245905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Famao</creatorcontrib><creatorcontrib>Su, Yanfei</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhao, Xuqing</creatorcontrib><creatorcontrib>Min, Weidong</creatorcontrib><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</description><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image registration</subject><subject>Levels</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Registers</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>remote sensing image registration</subject><subject>Robustness</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>State of the art</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPhS8Lk1SZMleZTh5mAqbA58C0l7GZ1bM5NW8b-33YZP33H3fcfdD6FbgjNCsHqYTxfLjGIiMiokEYycoQHhXKaYC3Le14ynXMmPS3QV4wZjyqQUA_SygJ1vIFlCHat6ncx2Zg3JAtZVbIJpKl8nq8Ng7Otvv237jtkmr9CGgzQ_PnwmEzBNGyBeowtnthFuTjpEq8nT-_g5nb9NZ-PHeVpQlTepLVXBHXBLHSsVYzJnYkSddSXFzJK8NFxIWxArwXJJuRWWFspBWShliWL5EN0f9-6D_2ohNnrj29AdFjXtnudsJIjoXOToKoKPMYDT-1DtTPjVBOuemu6p6Z6aPlHrMnfHTAUA_35JGVeY53_a_2nQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Ye, Famao</creator><creator>Su, Yanfei</creator><creator>Xiao, Hui</creator><creator>Zhao, Xuqing</creator><creator>Min, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0732-6495</orcidid><orcidid>https://orcid.org/0000-0003-2526-2181</orcidid></search><sort><creationdate>20180201</creationdate><title>Remote Sensing Image Registration Using Convolutional Neural Network Features</title><author>Ye, Famao ; Su, Yanfei ; Xiao, Hui ; Zhao, Xuqing ; Min, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bd9c5fe5b2f4d944834762fbfd204b13da578bc1b8eb5825b7b2c9fedc99b1943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image registration</topic><topic>Levels</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Registers</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>remote sensing image registration</topic><topic>Robustness</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>State of the art</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Famao</creatorcontrib><creatorcontrib>Su, Yanfei</creatorcontrib><creatorcontrib>Xiao, Hui</creatorcontrib><creatorcontrib>Zhao, Xuqing</creatorcontrib><creatorcontrib>Min, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Famao</au><au>Su, Yanfei</au><au>Xiao, Hui</au><au>Zhao, Xuqing</au><au>Min, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Sensing Image Registration Using Convolutional Neural Network Features</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>2</issue><spage>232</spage><epage>236</epage><pages>232-236</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Successful remote sensing image registration is an important step for many remote sensing applications. The scale-invariant feature transform (SIFT) is a well-known method for remote sensing image registration, with many variants of SIFT proposed. However, it only uses local low-level information, and loses much middle- or high-level information to register. Image features extracted by a convolutional neural network (CNN) have achieved the state-of-the-art performance for image classification and retrieval problems, and can provide much middle- and high-level information for remote sensing image registration. Hence, in this letter, we investigate how to calculate the CNN feature, and study the way to fuse SIFT and CNN features for remote sensing image registration. The experimental results demonstrate that the proposed method yields a better registration performance in terms of both the aligning accuracy and the number of correct correspondences.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2781741</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0732-6495</orcidid><orcidid>https://orcid.org/0000-0003-2526-2181</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-02, Vol.15 (2), p.232-236 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8245905 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Convolutional neural network (CNN) Detection Feature extraction Image classification Image registration Levels Methods Neural networks Registers Registration Remote sensing remote sensing image registration Robustness scale-invariant feature transform (SIFT) State of the art Transforms |
title | Remote Sensing Image Registration Using Convolutional Neural Network Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Sensing%20Image%20Registration%20Using%20Convolutional%20Neural%20Network%20Features&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ye,%20Famao&rft.date=2018-02-01&rft.volume=15&rft.issue=2&rft.spage=232&rft.epage=236&rft.pages=232-236&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2781741&rft_dat=%3Cproquest_RIE%3E2174546717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174546717&rft_id=info:pmid/&rft_ieee_id=8245905&rfr_iscdi=true |