Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching

Shot boundary detection (SBD) is an important and fundamental step in video content analysis such as content-based video indexing, browsing, and retrieval. In this paper, a hybrid SBD method is presented by integrating a high-level fuzzy Petri net (HLFPN) model with keypoint matching. The HLFPN mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2018-03, Vol.5 (1), p.210-219
Hauptverfasser: Rong-Kuan Shen, Yi-Nan Lin, Juang, Tony Tong-Ying, Shen, Victor R. L., Soo Yong Lim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 210
container_title IEEE transactions on computational social systems
container_volume 5
creator Rong-Kuan Shen
Yi-Nan Lin
Juang, Tony Tong-Ying
Shen, Victor R. L.
Soo Yong Lim
description Shot boundary detection (SBD) is an important and fundamental step in video content analysis such as content-based video indexing, browsing, and retrieval. In this paper, a hybrid SBD method is presented by integrating a high-level fuzzy Petri net (HLFPN) model with keypoint matching. The HLFPN model with histogram difference is executed as a predetection. Next, the speeded-up robust features (SURF) algorithm that is reliably robust to image affine transformation and illumination variation is used to figure out all possible false shots and the gradual transition based on the assumption from the HLFPN model. The top-down design can effectively lower down the computational complexity of SURF algorithm. The proposed approach has increased the precision of SBD and can be applied in different types of videos.
doi_str_mv 10.1109/TCSS.2017.2780882
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8239647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8239647</ieee_id><sourcerecordid>10_1109_TCSS_2017_2780882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-d95f55ef14956986717a3864936101ff3575f7027c066527cf06c4b493b6ff163</originalsourceid><addsrcrecordid>eNpNkNFOwjAUhhujiQR5AOPNeYFh263teokozAhqMjDeLaVrpQbWuZUL3t4tEOPVf5L_fCc5H0K3BI8JwfJ-Nc3zMcVEjKlIcZrSCzSgMZWRpMnn5b_5Go3a9htjTChjguIB-pkcgt-r4DQ8mmB0cL4Cb-HDlcZDvvUBHvyhKlVzBFdB7rVTO1ia0ilYt676AgXZcdO4EiZ13Xiltz2eLWbvr6CqEl7MsfauCrBUQW874AZdWbVrzeicQ7SePa2mWbR4mz9PJ4tIU85CVEpmGTOWJJJxmXJBhIpTnsiYE0ysjZlgVmAqNOacdWEx18mm6zfcWsLjISKnu7rxbdsYW9SN23d_FAQXvbai11b02oqzto65OzHOGPO33xWSJyL-BUqrZ9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Rong-Kuan Shen ; Yi-Nan Lin ; Juang, Tony Tong-Ying ; Shen, Victor R. L. ; Soo Yong Lim</creator><creatorcontrib>Rong-Kuan Shen ; Yi-Nan Lin ; Juang, Tony Tong-Ying ; Shen, Victor R. L. ; Soo Yong Lim</creatorcontrib><description>Shot boundary detection (SBD) is an important and fundamental step in video content analysis such as content-based video indexing, browsing, and retrieval. In this paper, a hybrid SBD method is presented by integrating a high-level fuzzy Petri net (HLFPN) model with keypoint matching. The HLFPN model with histogram difference is executed as a predetection. Next, the speeded-up robust features (SURF) algorithm that is reliably robust to image affine transformation and illumination variation is used to figure out all possible false shots and the gradual transition based on the assumption from the HLFPN model. The top-down design can effectively lower down the computational complexity of SURF algorithm. The proposed approach has increased the precision of SBD and can be applied in different types of videos.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2017.2780882</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cameras ; Computational modeling ; High-level fuzzy Petri net (HLFPN) ; Histograms ; keypoint matching ; Petri nets ; Robustness ; shot boundary detection (SBD) ; speeded-up robust features (SURF)</subject><ispartof>IEEE transactions on computational social systems, 2018-03, Vol.5 (1), p.210-219</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-d95f55ef14956986717a3864936101ff3575f7027c066527cf06c4b493b6ff163</citedby><cites>FETCH-LOGICAL-c265t-d95f55ef14956986717a3864936101ff3575f7027c066527cf06c4b493b6ff163</cites><orcidid>0000-0001-8194-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8239647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8239647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rong-Kuan Shen</creatorcontrib><creatorcontrib>Yi-Nan Lin</creatorcontrib><creatorcontrib>Juang, Tony Tong-Ying</creatorcontrib><creatorcontrib>Shen, Victor R. L.</creatorcontrib><creatorcontrib>Soo Yong Lim</creatorcontrib><title>Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Shot boundary detection (SBD) is an important and fundamental step in video content analysis such as content-based video indexing, browsing, and retrieval. In this paper, a hybrid SBD method is presented by integrating a high-level fuzzy Petri net (HLFPN) model with keypoint matching. The HLFPN model with histogram difference is executed as a predetection. Next, the speeded-up robust features (SURF) algorithm that is reliably robust to image affine transformation and illumination variation is used to figure out all possible false shots and the gradual transition based on the assumption from the HLFPN model. The top-down design can effectively lower down the computational complexity of SURF algorithm. The proposed approach has increased the precision of SBD and can be applied in different types of videos.</description><subject>Algorithm design and analysis</subject><subject>Cameras</subject><subject>Computational modeling</subject><subject>High-level fuzzy Petri net (HLFPN)</subject><subject>Histograms</subject><subject>keypoint matching</subject><subject>Petri nets</subject><subject>Robustness</subject><subject>shot boundary detection (SBD)</subject><subject>speeded-up robust features (SURF)</subject><issn>2329-924X</issn><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFOwjAUhhujiQR5AOPNeYFh263teokozAhqMjDeLaVrpQbWuZUL3t4tEOPVf5L_fCc5H0K3BI8JwfJ-Nc3zMcVEjKlIcZrSCzSgMZWRpMnn5b_5Go3a9htjTChjguIB-pkcgt-r4DQ8mmB0cL4Cb-HDlcZDvvUBHvyhKlVzBFdB7rVTO1ia0ilYt676AgXZcdO4EiZ13Xiltz2eLWbvr6CqEl7MsfauCrBUQW874AZdWbVrzeicQ7SePa2mWbR4mz9PJ4tIU85CVEpmGTOWJJJxmXJBhIpTnsiYE0ysjZlgVmAqNOacdWEx18mm6zfcWsLjISKnu7rxbdsYW9SN23d_FAQXvbai11b02oqzto65OzHOGPO33xWSJyL-BUqrZ9M</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Rong-Kuan Shen</creator><creator>Yi-Nan Lin</creator><creator>Juang, Tony Tong-Ying</creator><creator>Shen, Victor R. L.</creator><creator>Soo Yong Lim</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8194-3446</orcidid></search><sort><creationdate>201803</creationdate><title>Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching</title><author>Rong-Kuan Shen ; Yi-Nan Lin ; Juang, Tony Tong-Ying ; Shen, Victor R. L. ; Soo Yong Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-d95f55ef14956986717a3864936101ff3575f7027c066527cf06c4b493b6ff163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Cameras</topic><topic>Computational modeling</topic><topic>High-level fuzzy Petri net (HLFPN)</topic><topic>Histograms</topic><topic>keypoint matching</topic><topic>Petri nets</topic><topic>Robustness</topic><topic>shot boundary detection (SBD)</topic><topic>speeded-up robust features (SURF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong-Kuan Shen</creatorcontrib><creatorcontrib>Yi-Nan Lin</creatorcontrib><creatorcontrib>Juang, Tony Tong-Ying</creatorcontrib><creatorcontrib>Shen, Victor R. L.</creatorcontrib><creatorcontrib>Soo Yong Lim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rong-Kuan Shen</au><au>Yi-Nan Lin</au><au>Juang, Tony Tong-Ying</au><au>Shen, Victor R. L.</au><au>Soo Yong Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2018-03</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>210</spage><epage>219</epage><pages>210-219</pages><issn>2329-924X</issn><eissn>2329-924X</eissn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Shot boundary detection (SBD) is an important and fundamental step in video content analysis such as content-based video indexing, browsing, and retrieval. In this paper, a hybrid SBD method is presented by integrating a high-level fuzzy Petri net (HLFPN) model with keypoint matching. The HLFPN model with histogram difference is executed as a predetection. Next, the speeded-up robust features (SURF) algorithm that is reliably robust to image affine transformation and illumination variation is used to figure out all possible false shots and the gradual transition based on the assumption from the HLFPN model. The top-down design can effectively lower down the computational complexity of SURF algorithm. The proposed approach has increased the precision of SBD and can be applied in different types of videos.</abstract><pub>IEEE</pub><doi>10.1109/TCSS.2017.2780882</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8194-3446</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2018-03, Vol.5 (1), p.210-219
issn 2329-924X
2329-924X
2373-7476
language eng
recordid cdi_ieee_primary_8239647
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Cameras
Computational modeling
High-level fuzzy Petri net (HLFPN)
Histograms
keypoint matching
Petri nets
Robustness
shot boundary detection (SBD)
speeded-up robust features (SURF)
title Automatic Detection of Video Shot Boundary in Social Media Using a Hybrid Approach of HLFPN and Keypoint Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Detection%20of%20Video%20Shot%20Boundary%20in%20Social%20Media%20Using%20a%20Hybrid%20Approach%20of%20HLFPN%20and%20Keypoint%20Matching&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Rong-Kuan%20Shen&rft.date=2018-03&rft.volume=5&rft.issue=1&rft.spage=210&rft.epage=219&rft.pages=210-219&rft.issn=2329-924X&rft.eissn=2329-924X&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2017.2780882&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSS_2017_2780882%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8239647&rfr_iscdi=true