N-wave soliton solution on a generic background for KPI equation

We try to generalize the inverse scattering transform (IST) for the Kadomtsev-Petviashvili (KPI) equation to the case of potentials with "ray" type behavior, that is non-decaying along a finite number of directions in the plane. We present here the special but rather wide subclass of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boiti, M., Pempinelli, F., Prinari, B., Pogrebkov, A.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 167
container_title
container_volume
creator Boiti, M.
Pempinelli, F.
Prinari, B.
Pogrebkov, A.K.
description We try to generalize the inverse scattering transform (IST) for the Kadomtsev-Petviashvili (KPI) equation to the case of potentials with "ray" type behavior, that is non-decaying along a finite number of directions in the plane. We present here the special but rather wide subclass of such potentials obtained by applying recursively N binary Backlund transformations to a decaying potential. We start with a regular rapidly decaying potential for which all elements of the direct and inverse problem are given. We introduce an exact recursion procedure for an arbitrary number of binary Backlund transformations and corresponding Darboux transformations for Jost solutions and solutions of the discrete spectrum. We show that Jost solutions obey modified integral equations and present their analytical properties. We formulate conditions of reality and regularity of the potentials constructed by these means and derive spectral data of the transformed Jost solutions. Finally we solve the recursion procedure getting a solution which describes N solitons superimposed to a generic background.
doi_str_mv 10.1109/DD.1999.816197
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_816197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>816197</ieee_id><sourcerecordid>816197</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-ce42bab5e31cd93fa5885ace8b916d8c721f19ca4cc00b48d28296ae5c1666ba3</originalsourceid><addsrcrecordid>eNotj0tLA0EQhAdEUGKuHjzNH9h1emfn0Tcl8REM6kHPoWe2N4zGXd2H4r93QywKvjoUBSXEOagcQOHlcpkDIuYeLKA7EnN03jhEp8BYdyLmff-mJmnUaOypuHrMfuibZd_u0tA2e45DmsJkkltuuEtRBorv264dm0rWbScfnleSv0baF8_EcU27nuf_nInX25uXxX22frpbLa7XWQJXDlnksggUDGuIFeqajPeGIvuAYCsfXQE1YKQyRqVC6avCF2iJTQRrbSA9ExeH3cTMm88ufVD3uznc1H-NxUe6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>N-wave soliton solution on a generic background for KPI equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boiti, M. ; Pempinelli, F. ; Prinari, B. ; Pogrebkov, A.K.</creator><creatorcontrib>Boiti, M. ; Pempinelli, F. ; Prinari, B. ; Pogrebkov, A.K.</creatorcontrib><description>We try to generalize the inverse scattering transform (IST) for the Kadomtsev-Petviashvili (KPI) equation to the case of potentials with "ray" type behavior, that is non-decaying along a finite number of directions in the plane. We present here the special but rather wide subclass of such potentials obtained by applying recursively N binary Backlund transformations to a decaying potential. We start with a regular rapidly decaying potential for which all elements of the direct and inverse problem are given. We introduce an exact recursion procedure for an arbitrary number of binary Backlund transformations and corresponding Darboux transformations for Jost solutions and solutions of the discrete spectrum. We show that Jost solutions obey modified integral equations and present their analytical properties. We formulate conditions of reality and regularity of the potentials constructed by these means and derive spectral data of the transformed Jost solutions. Finally we solve the recursion procedure getting a solution which describes N solitons superimposed to a generic background.</description><identifier>ISBN: 9785799701567</identifier><identifier>ISBN: 5799701569</identifier><identifier>DOI: 10.1109/DD.1999.816197</identifier><language>eng</language><publisher>IEEE</publisher><subject>Diffraction ; Green's function methods ; H infinity control ; Integral equations ; Inverse problems ; Solitons</subject><ispartof>International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367), 1999, p.167-175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/816197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/816197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boiti, M.</creatorcontrib><creatorcontrib>Pempinelli, F.</creatorcontrib><creatorcontrib>Prinari, B.</creatorcontrib><creatorcontrib>Pogrebkov, A.K.</creatorcontrib><title>N-wave soliton solution on a generic background for KPI equation</title><title>International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)</title><addtitle>DD</addtitle><description>We try to generalize the inverse scattering transform (IST) for the Kadomtsev-Petviashvili (KPI) equation to the case of potentials with "ray" type behavior, that is non-decaying along a finite number of directions in the plane. We present here the special but rather wide subclass of such potentials obtained by applying recursively N binary Backlund transformations to a decaying potential. We start with a regular rapidly decaying potential for which all elements of the direct and inverse problem are given. We introduce an exact recursion procedure for an arbitrary number of binary Backlund transformations and corresponding Darboux transformations for Jost solutions and solutions of the discrete spectrum. We show that Jost solutions obey modified integral equations and present their analytical properties. We formulate conditions of reality and regularity of the potentials constructed by these means and derive spectral data of the transformed Jost solutions. Finally we solve the recursion procedure getting a solution which describes N solitons superimposed to a generic background.</description><subject>Diffraction</subject><subject>Green's function methods</subject><subject>H infinity control</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Solitons</subject><isbn>9785799701567</isbn><isbn>5799701569</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLA0EQhAdEUGKuHjzNH9h1emfn0Tcl8REM6kHPoWe2N4zGXd2H4r93QywKvjoUBSXEOagcQOHlcpkDIuYeLKA7EnN03jhEp8BYdyLmff-mJmnUaOypuHrMfuibZd_u0tA2e45DmsJkkltuuEtRBorv264dm0rWbScfnleSv0baF8_EcU27nuf_nInX25uXxX22frpbLa7XWQJXDlnksggUDGuIFeqajPeGIvuAYCsfXQE1YKQyRqVC6avCF2iJTQRrbSA9ExeH3cTMm88ufVD3uznc1H-NxUe6</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Boiti, M.</creator><creator>Pempinelli, F.</creator><creator>Prinari, B.</creator><creator>Pogrebkov, A.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1999</creationdate><title>N-wave soliton solution on a generic background for KPI equation</title><author>Boiti, M. ; Pempinelli, F. ; Prinari, B. ; Pogrebkov, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-ce42bab5e31cd93fa5885ace8b916d8c721f19ca4cc00b48d28296ae5c1666ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Diffraction</topic><topic>Green's function methods</topic><topic>H infinity control</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Solitons</topic><toplevel>online_resources</toplevel><creatorcontrib>Boiti, M.</creatorcontrib><creatorcontrib>Pempinelli, F.</creatorcontrib><creatorcontrib>Prinari, B.</creatorcontrib><creatorcontrib>Pogrebkov, A.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boiti, M.</au><au>Pempinelli, F.</au><au>Prinari, B.</au><au>Pogrebkov, A.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>N-wave soliton solution on a generic background for KPI equation</atitle><btitle>International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)</btitle><stitle>DD</stitle><date>1999</date><risdate>1999</risdate><spage>167</spage><epage>175</epage><pages>167-175</pages><isbn>9785799701567</isbn><isbn>5799701569</isbn><abstract>We try to generalize the inverse scattering transform (IST) for the Kadomtsev-Petviashvili (KPI) equation to the case of potentials with "ray" type behavior, that is non-decaying along a finite number of directions in the plane. We present here the special but rather wide subclass of such potentials obtained by applying recursively N binary Backlund transformations to a decaying potential. We start with a regular rapidly decaying potential for which all elements of the direct and inverse problem are given. We introduce an exact recursion procedure for an arbitrary number of binary Backlund transformations and corresponding Darboux transformations for Jost solutions and solutions of the discrete spectrum. We show that Jost solutions obey modified integral equations and present their analytical properties. We formulate conditions of reality and regularity of the potentials constructed by these means and derive spectral data of the transformed Jost solutions. Finally we solve the recursion procedure getting a solution which describes N solitons superimposed to a generic background.</abstract><pub>IEEE</pub><doi>10.1109/DD.1999.816197</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9785799701567
ispartof International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367), 1999, p.167-175
issn
language eng
recordid cdi_ieee_primary_816197
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Diffraction
Green's function methods
H infinity control
Integral equations
Inverse problems
Solitons
title N-wave soliton solution on a generic background for KPI equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=N-wave%20soliton%20solution%20on%20a%20generic%20background%20for%20KPI%20equation&rft.btitle=International%20Seminar.%20Day%20on%20Diffraction.%20Proceedings%20(IEEE%20Cat.%20No.99EX367)&rft.au=Boiti,%20M.&rft.date=1999&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.isbn=9785799701567&rft.isbn_list=5799701569&rft_id=info:doi/10.1109/DD.1999.816197&rft_dat=%3Cieee_6IE%3E816197%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=816197&rfr_iscdi=true