Scaling Effects on Single-Event Transients in InGaAs FinFETs
The single-event-transient response of InGaAs FinFETs with different fin widths is examined using pulsed-laser and heavy-ion irradiation. Devices with wider fins collect more charge in both environments. Quantum-well structures confine charge collection in the channel, and determine the sensitive vo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2018-01, Vol.65 (1), p.296-303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 1 |
container_start_page | 296 |
container_title | IEEE transactions on nuclear science |
container_volume | 65 |
creator | Gong, Huiqi Ni, Kai Zhang, En Xia Sternberg, Andrew L. Kozub, John A. Ryder, Kaitlyn L. Keller, Ryan F. Ryder, Landen D. Weiss, Sharon M. Weller, Robert A. Alles, Michael L. Reed, Robert A. Fleetwood, Daniel M. Schrimpf, Ronald D. Vardi, Alon del Alamo, Jesus A. |
description | The single-event-transient response of InGaAs FinFETs with different fin widths is examined using pulsed-laser and heavy-ion irradiation. Devices with wider fins collect more charge in both environments. Quantum-well structures confine charge collection in the channel, and determine the sensitive volume. Simulations show that the charge density produced by irradiation is similar for devices with different fin widths, but more charge is collected by wider fin devices due to the larger channel volume. Charge accumulated in the buffer and substrate layers modulates the body potential, altering the degree of back-gate control, leading to additional effects associated with charge accumulation in wider fin devices. Optical simulations for a model system suggest that optical phenomena in the fins should be considered for laser testing. These include optical interference, plasmonic enhancement at the metal-dielectric interfaces, and enhanced electron-hole pair recombination due to multiple reflections in multigate devices with nanoscale dimensions. |
doi_str_mv | 10.1109/TNS.2017.2778640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8123833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8123833</ieee_id><sourcerecordid>1988729184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-41d9e6ced9cd4fbf07762cc77d04ee870665912376398b20d755c06e97bc14433</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ5hu8lNLWQtFD6zlss7OypWZrshX875vS4mk-eG_m8SPkkcGIMbAv6_fVqASmR6XWRgm4IgMmpSmY1OaaDACYKayw9pbcpbTNo5AgB-R15atdG77otGnQ94l2ga7yvMNi-ouhp-tYhdTmLtE20EWYV-NEZ22YTdfpntw01S7hw6UOyWdeT96K5cd8MRkvC8857wvBaovKY219LZpNA1qr0nutaxCIRoNS0rKSa8Wt2ZRQayk9KLR645kQnA_J8_nuPnY_B0y923aHGPJLx6wxurTMiKyCs8rHLqWIjdvH9ruKf46BOzFymZE7MXIXRtnydLa0iPgvNzmLycmPtqZf_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988729184</pqid></control><display><type>article</type><title>Scaling Effects on Single-Event Transients in InGaAs FinFETs</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Huiqi ; Ni, Kai ; Zhang, En Xia ; Sternberg, Andrew L. ; Kozub, John A. ; Ryder, Kaitlyn L. ; Keller, Ryan F. ; Ryder, Landen D. ; Weiss, Sharon M. ; Weller, Robert A. ; Alles, Michael L. ; Reed, Robert A. ; Fleetwood, Daniel M. ; Schrimpf, Ronald D. ; Vardi, Alon ; del Alamo, Jesus A.</creator><creatorcontrib>Gong, Huiqi ; Ni, Kai ; Zhang, En Xia ; Sternberg, Andrew L. ; Kozub, John A. ; Ryder, Kaitlyn L. ; Keller, Ryan F. ; Ryder, Landen D. ; Weiss, Sharon M. ; Weller, Robert A. ; Alles, Michael L. ; Reed, Robert A. ; Fleetwood, Daniel M. ; Schrimpf, Ronald D. ; Vardi, Alon ; del Alamo, Jesus A.</creatorcontrib><description>The single-event-transient response of InGaAs FinFETs with different fin widths is examined using pulsed-laser and heavy-ion irradiation. Devices with wider fins collect more charge in both environments. Quantum-well structures confine charge collection in the channel, and determine the sensitive volume. Simulations show that the charge density produced by irradiation is similar for devices with different fin widths, but more charge is collected by wider fin devices due to the larger channel volume. Charge accumulated in the buffer and substrate layers modulates the body potential, altering the degree of back-gate control, leading to additional effects associated with charge accumulation in wider fin devices. Optical simulations for a model system suggest that optical phenomena in the fins should be considered for laser testing. These include optical interference, plasmonic enhancement at the metal-dielectric interfaces, and enhanced electron-hole pair recombination due to multiple reflections in multigate devices with nanoscale dimensions.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2017.2778640</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Charge collection ; Charge density ; Computer simulation ; fin width ; FinFETs ; Fins ; heavy ion ; Indium gallium arsenide ; InGaAs ; Interfaces ; Ion irradiation ; Ions ; Irradiation ; Logic gates ; MOSFETs ; pulsed laser ; Quantum wells ; Radiation effects ; Recombination ; Scaling ; scaling effects ; Semiconductor devices ; single-event transient (SET) ; Substrates ; technology computer-aided design (TCAD) ; Transient analysis</subject><ispartof>IEEE transactions on nuclear science, 2018-01, Vol.65 (1), p.296-303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-41d9e6ced9cd4fbf07762cc77d04ee870665912376398b20d755c06e97bc14433</citedby><cites>FETCH-LOGICAL-c333t-41d9e6ced9cd4fbf07762cc77d04ee870665912376398b20d755c06e97bc14433</cites><orcidid>0000-0002-2014-3637 ; 0000-0002-3119-0850 ; 0000-0003-4257-7142 ; 0000-0001-9125-4118 ; 0000-0001-7419-2701 ; 0000-0002-3628-3431 ; 0000-0003-4003-7863 ; 0000-0002-2280-219X ; 0000-0002-1116-8509 ; 0000-0002-8021-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8123833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8123833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Huiqi</creatorcontrib><creatorcontrib>Ni, Kai</creatorcontrib><creatorcontrib>Zhang, En Xia</creatorcontrib><creatorcontrib>Sternberg, Andrew L.</creatorcontrib><creatorcontrib>Kozub, John A.</creatorcontrib><creatorcontrib>Ryder, Kaitlyn L.</creatorcontrib><creatorcontrib>Keller, Ryan F.</creatorcontrib><creatorcontrib>Ryder, Landen D.</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Weller, Robert A.</creatorcontrib><creatorcontrib>Alles, Michael L.</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Vardi, Alon</creatorcontrib><creatorcontrib>del Alamo, Jesus A.</creatorcontrib><title>Scaling Effects on Single-Event Transients in InGaAs FinFETs</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The single-event-transient response of InGaAs FinFETs with different fin widths is examined using pulsed-laser and heavy-ion irradiation. Devices with wider fins collect more charge in both environments. Quantum-well structures confine charge collection in the channel, and determine the sensitive volume. Simulations show that the charge density produced by irradiation is similar for devices with different fin widths, but more charge is collected by wider fin devices due to the larger channel volume. Charge accumulated in the buffer and substrate layers modulates the body potential, altering the degree of back-gate control, leading to additional effects associated with charge accumulation in wider fin devices. Optical simulations for a model system suggest that optical phenomena in the fins should be considered for laser testing. These include optical interference, plasmonic enhancement at the metal-dielectric interfaces, and enhanced electron-hole pair recombination due to multiple reflections in multigate devices with nanoscale dimensions.</description><subject>Charge collection</subject><subject>Charge density</subject><subject>Computer simulation</subject><subject>fin width</subject><subject>FinFETs</subject><subject>Fins</subject><subject>heavy ion</subject><subject>Indium gallium arsenide</subject><subject>InGaAs</subject><subject>Interfaces</subject><subject>Ion irradiation</subject><subject>Ions</subject><subject>Irradiation</subject><subject>Logic gates</subject><subject>MOSFETs</subject><subject>pulsed laser</subject><subject>Quantum wells</subject><subject>Radiation effects</subject><subject>Recombination</subject><subject>Scaling</subject><subject>scaling effects</subject><subject>Semiconductor devices</subject><subject>single-event transient (SET)</subject><subject>Substrates</subject><subject>technology computer-aided design (TCAD)</subject><subject>Transient analysis</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ5hu8lNLWQtFD6zlss7OypWZrshX875vS4mk-eG_m8SPkkcGIMbAv6_fVqASmR6XWRgm4IgMmpSmY1OaaDACYKayw9pbcpbTNo5AgB-R15atdG77otGnQ94l2ga7yvMNi-ouhp-tYhdTmLtE20EWYV-NEZ22YTdfpntw01S7hw6UOyWdeT96K5cd8MRkvC8857wvBaovKY219LZpNA1qr0nutaxCIRoNS0rKSa8Wt2ZRQayk9KLR645kQnA_J8_nuPnY_B0y923aHGPJLx6wxurTMiKyCs8rHLqWIjdvH9ruKf46BOzFymZE7MXIXRtnydLa0iPgvNzmLycmPtqZf_g</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Gong, Huiqi</creator><creator>Ni, Kai</creator><creator>Zhang, En Xia</creator><creator>Sternberg, Andrew L.</creator><creator>Kozub, John A.</creator><creator>Ryder, Kaitlyn L.</creator><creator>Keller, Ryan F.</creator><creator>Ryder, Landen D.</creator><creator>Weiss, Sharon M.</creator><creator>Weller, Robert A.</creator><creator>Alles, Michael L.</creator><creator>Reed, Robert A.</creator><creator>Fleetwood, Daniel M.</creator><creator>Schrimpf, Ronald D.</creator><creator>Vardi, Alon</creator><creator>del Alamo, Jesus A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2014-3637</orcidid><orcidid>https://orcid.org/0000-0002-3119-0850</orcidid><orcidid>https://orcid.org/0000-0003-4257-7142</orcidid><orcidid>https://orcid.org/0000-0001-9125-4118</orcidid><orcidid>https://orcid.org/0000-0001-7419-2701</orcidid><orcidid>https://orcid.org/0000-0002-3628-3431</orcidid><orcidid>https://orcid.org/0000-0003-4003-7863</orcidid><orcidid>https://orcid.org/0000-0002-2280-219X</orcidid><orcidid>https://orcid.org/0000-0002-1116-8509</orcidid><orcidid>https://orcid.org/0000-0002-8021-2411</orcidid></search><sort><creationdate>201801</creationdate><title>Scaling Effects on Single-Event Transients in InGaAs FinFETs</title><author>Gong, Huiqi ; Ni, Kai ; Zhang, En Xia ; Sternberg, Andrew L. ; Kozub, John A. ; Ryder, Kaitlyn L. ; Keller, Ryan F. ; Ryder, Landen D. ; Weiss, Sharon M. ; Weller, Robert A. ; Alles, Michael L. ; Reed, Robert A. ; Fleetwood, Daniel M. ; Schrimpf, Ronald D. ; Vardi, Alon ; del Alamo, Jesus A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-41d9e6ced9cd4fbf07762cc77d04ee870665912376398b20d755c06e97bc14433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge collection</topic><topic>Charge density</topic><topic>Computer simulation</topic><topic>fin width</topic><topic>FinFETs</topic><topic>Fins</topic><topic>heavy ion</topic><topic>Indium gallium arsenide</topic><topic>InGaAs</topic><topic>Interfaces</topic><topic>Ion irradiation</topic><topic>Ions</topic><topic>Irradiation</topic><topic>Logic gates</topic><topic>MOSFETs</topic><topic>pulsed laser</topic><topic>Quantum wells</topic><topic>Radiation effects</topic><topic>Recombination</topic><topic>Scaling</topic><topic>scaling effects</topic><topic>Semiconductor devices</topic><topic>single-event transient (SET)</topic><topic>Substrates</topic><topic>technology computer-aided design (TCAD)</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Huiqi</creatorcontrib><creatorcontrib>Ni, Kai</creatorcontrib><creatorcontrib>Zhang, En Xia</creatorcontrib><creatorcontrib>Sternberg, Andrew L.</creatorcontrib><creatorcontrib>Kozub, John A.</creatorcontrib><creatorcontrib>Ryder, Kaitlyn L.</creatorcontrib><creatorcontrib>Keller, Ryan F.</creatorcontrib><creatorcontrib>Ryder, Landen D.</creatorcontrib><creatorcontrib>Weiss, Sharon M.</creatorcontrib><creatorcontrib>Weller, Robert A.</creatorcontrib><creatorcontrib>Alles, Michael L.</creatorcontrib><creatorcontrib>Reed, Robert A.</creatorcontrib><creatorcontrib>Fleetwood, Daniel M.</creatorcontrib><creatorcontrib>Schrimpf, Ronald D.</creatorcontrib><creatorcontrib>Vardi, Alon</creatorcontrib><creatorcontrib>del Alamo, Jesus A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Huiqi</au><au>Ni, Kai</au><au>Zhang, En Xia</au><au>Sternberg, Andrew L.</au><au>Kozub, John A.</au><au>Ryder, Kaitlyn L.</au><au>Keller, Ryan F.</au><au>Ryder, Landen D.</au><au>Weiss, Sharon M.</au><au>Weller, Robert A.</au><au>Alles, Michael L.</au><au>Reed, Robert A.</au><au>Fleetwood, Daniel M.</au><au>Schrimpf, Ronald D.</au><au>Vardi, Alon</au><au>del Alamo, Jesus A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Effects on Single-Event Transients in InGaAs FinFETs</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-01</date><risdate>2018</risdate><volume>65</volume><issue>1</issue><spage>296</spage><epage>303</epage><pages>296-303</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The single-event-transient response of InGaAs FinFETs with different fin widths is examined using pulsed-laser and heavy-ion irradiation. Devices with wider fins collect more charge in both environments. Quantum-well structures confine charge collection in the channel, and determine the sensitive volume. Simulations show that the charge density produced by irradiation is similar for devices with different fin widths, but more charge is collected by wider fin devices due to the larger channel volume. Charge accumulated in the buffer and substrate layers modulates the body potential, altering the degree of back-gate control, leading to additional effects associated with charge accumulation in wider fin devices. Optical simulations for a model system suggest that optical phenomena in the fins should be considered for laser testing. These include optical interference, plasmonic enhancement at the metal-dielectric interfaces, and enhanced electron-hole pair recombination due to multiple reflections in multigate devices with nanoscale dimensions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2017.2778640</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2014-3637</orcidid><orcidid>https://orcid.org/0000-0002-3119-0850</orcidid><orcidid>https://orcid.org/0000-0003-4257-7142</orcidid><orcidid>https://orcid.org/0000-0001-9125-4118</orcidid><orcidid>https://orcid.org/0000-0001-7419-2701</orcidid><orcidid>https://orcid.org/0000-0002-3628-3431</orcidid><orcidid>https://orcid.org/0000-0003-4003-7863</orcidid><orcidid>https://orcid.org/0000-0002-2280-219X</orcidid><orcidid>https://orcid.org/0000-0002-1116-8509</orcidid><orcidid>https://orcid.org/0000-0002-8021-2411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2018-01, Vol.65 (1), p.296-303 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_8123833 |
source | IEEE Electronic Library (IEL) |
subjects | Charge collection Charge density Computer simulation fin width FinFETs Fins heavy ion Indium gallium arsenide InGaAs Interfaces Ion irradiation Ions Irradiation Logic gates MOSFETs pulsed laser Quantum wells Radiation effects Recombination Scaling scaling effects Semiconductor devices single-event transient (SET) Substrates technology computer-aided design (TCAD) Transient analysis |
title | Scaling Effects on Single-Event Transients in InGaAs FinFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Effects%20on%20Single-Event%20Transients%20in%20InGaAs%20FinFETs&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Gong,%20Huiqi&rft.date=2018-01&rft.volume=65&rft.issue=1&rft.spage=296&rft.epage=303&rft.pages=296-303&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2017.2778640&rft_dat=%3Cproquest_RIE%3E1988729184%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988729184&rft_id=info:pmid/&rft_ieee_id=8123833&rfr_iscdi=true |