Direct Estimation of Density Functionals Using a Polynomial Basis

A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-02, Vol.66 (3), p.558-572
Hauptverfasser: Wisler, Alan, Berisha, Visar, Spanias, Andreas, Hero, Alfred O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 3
container_start_page 558
container_title IEEE transactions on signal processing
container_volume 66
creator Wisler, Alan
Berisha, Visar
Spanias, Andreas
Hero, Alfred O.
description A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.
doi_str_mv 10.1109/TSP.2017.2775587
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8120107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8120107</ieee_id><sourcerecordid>10_1109_TSP_2017_2775587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK7eBS_5Aq0zbZq0x3X_KSy44C54K0k6lUi3laYe-u1N2cXTDG_eGx4_xh4RYkQong8f-zgBVHGiVJbl6orNsBAYgVDyOuyQpVGQP2_ZnfffAChEIWdssXI92YGv_eBOenBdy7uar6j1bhj55re1k6Ybz4_etV9c833XjG13crrhL9o7f89u6nCnh8ucs-NmfVi-Rrv37dtysYtsItMhyuok10B1BYgkjCaZGqu0LKSBXIEyNrHSKMpIUGJ0oW0uKiMEZqKyBdbpnMH5r-0773uqy58-VO7HEqGcEJQBQTkhKC8IQuTpHHFE9G_PMZhApX-lVVij</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><source>IEEE Electronic Library (IEL)</source><creator>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</creator><creatorcontrib>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</creatorcontrib><description>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2775587</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bernstein polynomial ; Convergence ; Density functional theory ; direct estimation ; Divergence estimation ; Error analysis ; Estimation ; Histograms ; Information theory ; nearest neighbor graphs ; Signal processing</subject><ispartof>IEEE transactions on signal processing, 2018-02, Vol.66 (3), p.558-572</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</citedby><cites>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</cites><orcidid>0000-0003-2601-2846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8120107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8120107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wisler, Alan</creatorcontrib><creatorcontrib>Berisha, Visar</creatorcontrib><creatorcontrib>Spanias, Andreas</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</description><subject>Bernstein polynomial</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>direct estimation</subject><subject>Divergence estimation</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Histograms</subject><subject>Information theory</subject><subject>nearest neighbor graphs</subject><subject>Signal processing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LxDAQxYMouK7eBS_5Aq0zbZq0x3X_KSy44C54K0k6lUi3laYe-u1N2cXTDG_eGx4_xh4RYkQong8f-zgBVHGiVJbl6orNsBAYgVDyOuyQpVGQP2_ZnfffAChEIWdssXI92YGv_eBOenBdy7uar6j1bhj55re1k6Ybz4_etV9c833XjG13crrhL9o7f89u6nCnh8ucs-NmfVi-Rrv37dtysYtsItMhyuok10B1BYgkjCaZGqu0LKSBXIEyNrHSKMpIUGJ0oW0uKiMEZqKyBdbpnMH5r-0773uqy58-VO7HEqGcEJQBQTkhKC8IQuTpHHFE9G_PMZhApX-lVVij</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Wisler, Alan</creator><creator>Berisha, Visar</creator><creator>Spanias, Andreas</creator><creator>Hero, Alfred O.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2601-2846</orcidid></search><sort><creationdate>20180201</creationdate><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><author>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bernstein polynomial</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>direct estimation</topic><topic>Divergence estimation</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Histograms</topic><topic>Information theory</topic><topic>nearest neighbor graphs</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wisler, Alan</creatorcontrib><creatorcontrib>Berisha, Visar</creatorcontrib><creatorcontrib>Spanias, Andreas</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wisler, Alan</au><au>Berisha, Visar</au><au>Spanias, Andreas</au><au>Hero, Alfred O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Estimation of Density Functionals Using a Polynomial Basis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>66</volume><issue>3</issue><spage>558</spage><epage>572</epage><pages>558-572</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2775587</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2601-2846</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-02, Vol.66 (3), p.558-572
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8120107
source IEEE Electronic Library (IEL)
subjects Bernstein polynomial
Convergence
Density functional theory
direct estimation
Divergence estimation
Error analysis
Estimation
Histograms
Information theory
nearest neighbor graphs
Signal processing
title Direct Estimation of Density Functionals Using a Polynomial Basis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Estimation%20of%20Density%20Functionals%20Using%20a%20Polynomial%20Basis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wisler,%20Alan&rft.date=2018-02-01&rft.volume=66&rft.issue=3&rft.spage=558&rft.epage=572&rft.pages=558-572&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2775587&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2017_2775587%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8120107&rfr_iscdi=true