Direct Estimation of Density Functionals Using a Polynomial Basis
A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-02, Vol.66 (3), p.558-572 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 3 |
container_start_page | 558 |
container_title | IEEE transactions on signal processing |
container_volume | 66 |
creator | Wisler, Alan Berisha, Visar Spanias, Andreas Hero, Alfred O. |
description | A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate. |
doi_str_mv | 10.1109/TSP.2017.2775587 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8120107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8120107</ieee_id><sourcerecordid>10_1109_TSP_2017_2775587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK7eBS_5Aq0zbZq0x3X_KSy44C54K0k6lUi3laYe-u1N2cXTDG_eGx4_xh4RYkQong8f-zgBVHGiVJbl6orNsBAYgVDyOuyQpVGQP2_ZnfffAChEIWdssXI92YGv_eBOenBdy7uar6j1bhj55re1k6Ybz4_etV9c833XjG13crrhL9o7f89u6nCnh8ucs-NmfVi-Rrv37dtysYtsItMhyuok10B1BYgkjCaZGqu0LKSBXIEyNrHSKMpIUGJ0oW0uKiMEZqKyBdbpnMH5r-0773uqy58-VO7HEqGcEJQBQTkhKC8IQuTpHHFE9G_PMZhApX-lVVij</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><source>IEEE Electronic Library (IEL)</source><creator>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</creator><creatorcontrib>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</creatorcontrib><description>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2775587</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bernstein polynomial ; Convergence ; Density functional theory ; direct estimation ; Divergence estimation ; Error analysis ; Estimation ; Histograms ; Information theory ; nearest neighbor graphs ; Signal processing</subject><ispartof>IEEE transactions on signal processing, 2018-02, Vol.66 (3), p.558-572</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</citedby><cites>FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</cites><orcidid>0000-0003-2601-2846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8120107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8120107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wisler, Alan</creatorcontrib><creatorcontrib>Berisha, Visar</creatorcontrib><creatorcontrib>Spanias, Andreas</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</description><subject>Bernstein polynomial</subject><subject>Convergence</subject><subject>Density functional theory</subject><subject>direct estimation</subject><subject>Divergence estimation</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Histograms</subject><subject>Information theory</subject><subject>nearest neighbor graphs</subject><subject>Signal processing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LxDAQxYMouK7eBS_5Aq0zbZq0x3X_KSy44C54K0k6lUi3laYe-u1N2cXTDG_eGx4_xh4RYkQong8f-zgBVHGiVJbl6orNsBAYgVDyOuyQpVGQP2_ZnfffAChEIWdssXI92YGv_eBOenBdy7uar6j1bhj55re1k6Ybz4_etV9c833XjG13crrhL9o7f89u6nCnh8ucs-NmfVi-Rrv37dtysYtsItMhyuok10B1BYgkjCaZGqu0LKSBXIEyNrHSKMpIUGJ0oW0uKiMEZqKyBdbpnMH5r-0773uqy58-VO7HEqGcEJQBQTkhKC8IQuTpHHFE9G_PMZhApX-lVVij</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Wisler, Alan</creator><creator>Berisha, Visar</creator><creator>Spanias, Andreas</creator><creator>Hero, Alfred O.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2601-2846</orcidid></search><sort><creationdate>20180201</creationdate><title>Direct Estimation of Density Functionals Using a Polynomial Basis</title><author>Wisler, Alan ; Berisha, Visar ; Spanias, Andreas ; Hero, Alfred O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5f28a0efd011e4bae63bc7a696b08707bc2c6b7e5e4e2ba9ac84db44154dc91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bernstein polynomial</topic><topic>Convergence</topic><topic>Density functional theory</topic><topic>direct estimation</topic><topic>Divergence estimation</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Histograms</topic><topic>Information theory</topic><topic>nearest neighbor graphs</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wisler, Alan</creatorcontrib><creatorcontrib>Berisha, Visar</creatorcontrib><creatorcontrib>Spanias, Andreas</creatorcontrib><creatorcontrib>Hero, Alfred O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wisler, Alan</au><au>Berisha, Visar</au><au>Spanias, Andreas</au><au>Hero, Alfred O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Estimation of Density Functionals Using a Polynomial Basis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>66</volume><issue>3</issue><spage>558</spage><epage>572</epage><pages>558-572</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A number of fundamental quantities in statistical signal processing and information theory can be expressed as integral functions of two probability density functions. Such quantities are called density functionals as they map density functions onto the real line. For example, information divergence functions measure the dissimilarity between two probability density functions and are useful in a number of applications. Typically, estimating these quantities requires complete knowledge of the underlying distribution followed by multidimensional integration. Existing methods make parametric assumptions about the data distribution or use nonparametric density estimation followed by high-dimensional integration. In this paper, we propose a new alternative. We introduce the concept of "data-driven basis functions"-functions of distributions whose value we can estimate given only samples from the underlying distributions without requiring distribution fitting or direct integration. We derive a new data-driven complete basis that is similar to the deterministic Bernstein polynomial basis and develop two methods for performing basis expansions of functionals of two distributions. We also show that the new basis set allows us to approximate functions of distributions as closely as desired. Finally, we evaluate the methodology by developing data-driven estimators for the Kullback-Leibler divergences and the Hellinger distance and by constructing empirical estimates of tight bounds on the Bayes error rate.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2775587</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2601-2846</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2018-02, Vol.66 (3), p.558-572 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_8120107 |
source | IEEE Electronic Library (IEL) |
subjects | Bernstein polynomial Convergence Density functional theory direct estimation Divergence estimation Error analysis Estimation Histograms Information theory nearest neighbor graphs Signal processing |
title | Direct Estimation of Density Functionals Using a Polynomial Basis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Estimation%20of%20Density%20Functionals%20Using%20a%20Polynomial%20Basis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wisler,%20Alan&rft.date=2018-02-01&rft.volume=66&rft.issue=3&rft.spage=558&rft.epage=572&rft.pages=558-572&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2775587&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2017_2775587%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8120107&rfr_iscdi=true |