Ensembles of Lasso Screening Rules
In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-12, Vol.40 (12), p.2841-2852 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2852 |
---|---|
container_issue | 12 |
container_start_page | 2841 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Lee, Seunghak Gornitz, Nico Xing, Eric P. Heckerman, David Lippert, Christoph |
description | In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers. |
doi_str_mv | 10.1109/TPAMI.2017.2765321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8119835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8119835</ieee_id><sourcerecordid>2130607542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMobk6_gIIMffGlMzdp0uRFGGPqYKLofA5pezs7-mc2q-C3N3NzqBAI5PzuuffmEHIKdABA9fXsafgwGTAK0YBFUnAGe6QLmuuAC673SZeCZIFSTHXIkXMLSiEUlB-SDtNa-QNdcjGuHJZxga5fZ_2pda7uvyQNYpVX8_5z64VjcpDZwuHJ9u6R19vxbHQfTB_vJqPhNEi86ypIUxACNBMsozy1IRdKiVBYwaIsjVFmiX_SUqc0YRos46GkKKIYFapYUsF75Gbju2zjEtMEq1VjC7Ns8tI2n6a2ufmrVPmbmdcfRvqmlK0NrrYGTf3eoluZMncJFoWtsG6dYVQqLkBFkUcv_6GLum0qv55hwKmkkQiZp9iGSprauQaz3TBAzToC8x2BWUdgthH4ovPfa-xKfv7cA2cbIEfEnawAtJ-OfwG8dIiT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130607542</pqid></control><display><type>article</type><title>Ensembles of Lasso Screening Rules</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</creator><creatorcontrib>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</creatorcontrib><description>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2765321</identifier><identifier>PMID: 29989981</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Attorneys ; Closed-form solutions ; Computational efficiency ; Computer Simulation ; Databases, Factual ; ensemble ; Feature extraction ; Half spaces ; Heuristic algorithms ; Humans ; Image Processing, Computer-Assisted - methods ; Lasso ; Machine Learning ; Optimization ; Screening ; screening rule ; Solvers</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-12, Vol.40 (12), p.2841-2852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</citedby><cites>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</cites><orcidid>0000-0002-5222-3631 ; 0000-0002-8030-7138 ; 0000-0001-6363-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8119835$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seunghak</creatorcontrib><creatorcontrib>Gornitz, Nico</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Heckerman, David</creatorcontrib><creatorcontrib>Lippert, Christoph</creatorcontrib><title>Ensembles of Lasso Screening Rules</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Attorneys</subject><subject>Closed-form solutions</subject><subject>Computational efficiency</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>ensemble</subject><subject>Feature extraction</subject><subject>Half spaces</subject><subject>Heuristic algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lasso</subject><subject>Machine Learning</subject><subject>Optimization</subject><subject>Screening</subject><subject>screening rule</subject><subject>Solvers</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMobk6_gIIMffGlMzdp0uRFGGPqYKLofA5pezs7-mc2q-C3N3NzqBAI5PzuuffmEHIKdABA9fXsafgwGTAK0YBFUnAGe6QLmuuAC673SZeCZIFSTHXIkXMLSiEUlB-SDtNa-QNdcjGuHJZxga5fZ_2pda7uvyQNYpVX8_5z64VjcpDZwuHJ9u6R19vxbHQfTB_vJqPhNEi86ypIUxACNBMsozy1IRdKiVBYwaIsjVFmiX_SUqc0YRos46GkKKIYFapYUsF75Gbju2zjEtMEq1VjC7Ns8tI2n6a2ufmrVPmbmdcfRvqmlK0NrrYGTf3eoluZMncJFoWtsG6dYVQqLkBFkUcv_6GLum0qv55hwKmkkQiZp9iGSprauQaz3TBAzToC8x2BWUdgthH4ovPfa-xKfv7cA2cbIEfEnawAtJ-OfwG8dIiT</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lee, Seunghak</creator><creator>Gornitz, Nico</creator><creator>Xing, Eric P.</creator><creator>Heckerman, David</creator><creator>Lippert, Christoph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5222-3631</orcidid><orcidid>https://orcid.org/0000-0002-8030-7138</orcidid><orcidid>https://orcid.org/0000-0001-6363-2556</orcidid></search><sort><creationdate>20181201</creationdate><title>Ensembles of Lasso Screening Rules</title><author>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Attorneys</topic><topic>Closed-form solutions</topic><topic>Computational efficiency</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>ensemble</topic><topic>Feature extraction</topic><topic>Half spaces</topic><topic>Heuristic algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lasso</topic><topic>Machine Learning</topic><topic>Optimization</topic><topic>Screening</topic><topic>screening rule</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seunghak</creatorcontrib><creatorcontrib>Gornitz, Nico</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Heckerman, David</creatorcontrib><creatorcontrib>Lippert, Christoph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seunghak</au><au>Gornitz, Nico</au><au>Xing, Eric P.</au><au>Heckerman, David</au><au>Lippert, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensembles of Lasso Screening Rules</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>40</volume><issue>12</issue><spage>2841</spage><epage>2852</epage><pages>2841-2852</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29989981</pmid><doi>10.1109/TPAMI.2017.2765321</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5222-3631</orcidid><orcidid>https://orcid.org/0000-0002-8030-7138</orcidid><orcidid>https://orcid.org/0000-0001-6363-2556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-12, Vol.40 (12), p.2841-2852 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_8119835 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Attorneys Closed-form solutions Computational efficiency Computer Simulation Databases, Factual ensemble Feature extraction Half spaces Heuristic algorithms Humans Image Processing, Computer-Assisted - methods Lasso Machine Learning Optimization Screening screening rule Solvers |
title | Ensembles of Lasso Screening Rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensembles%20of%20Lasso%20Screening%20Rules&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lee,%20Seunghak&rft.date=2018-12-01&rft.volume=40&rft.issue=12&rft.spage=2841&rft.epage=2852&rft.pages=2841-2852&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2765321&rft_dat=%3Cproquest_ieee_%3E2130607542%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130607542&rft_id=info:pmid/29989981&rft_ieee_id=8119835&rfr_iscdi=true |