Ensembles of Lasso Screening Rules

In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2018-12, Vol.40 (12), p.2841-2852
Hauptverfasser: Lee, Seunghak, Gornitz, Nico, Xing, Eric P., Heckerman, David, Lippert, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2852
container_issue 12
container_start_page 2841
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 40
creator Lee, Seunghak
Gornitz, Nico
Xing, Eric P.
Heckerman, David
Lippert, Christoph
description In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.
doi_str_mv 10.1109/TPAMI.2017.2765321
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8119835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8119835</ieee_id><sourcerecordid>2130607542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</originalsourceid><addsrcrecordid>eNpdkV9LwzAUxYMobk6_gIIMffGlMzdp0uRFGGPqYKLofA5pezs7-mc2q-C3N3NzqBAI5PzuuffmEHIKdABA9fXsafgwGTAK0YBFUnAGe6QLmuuAC673SZeCZIFSTHXIkXMLSiEUlB-SDtNa-QNdcjGuHJZxga5fZ_2pda7uvyQNYpVX8_5z64VjcpDZwuHJ9u6R19vxbHQfTB_vJqPhNEi86ypIUxACNBMsozy1IRdKiVBYwaIsjVFmiX_SUqc0YRos46GkKKIYFapYUsF75Gbju2zjEtMEq1VjC7Ns8tI2n6a2ufmrVPmbmdcfRvqmlK0NrrYGTf3eoluZMncJFoWtsG6dYVQqLkBFkUcv_6GLum0qv55hwKmkkQiZp9iGSprauQaz3TBAzToC8x2BWUdgthH4ovPfa-xKfv7cA2cbIEfEnawAtJ-OfwG8dIiT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130607542</pqid></control><display><type>article</type><title>Ensembles of Lasso Screening Rules</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</creator><creatorcontrib>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</creatorcontrib><description>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2017.2765321</identifier><identifier>PMID: 29989981</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Attorneys ; Closed-form solutions ; Computational efficiency ; Computer Simulation ; Databases, Factual ; ensemble ; Feature extraction ; Half spaces ; Heuristic algorithms ; Humans ; Image Processing, Computer-Assisted - methods ; Lasso ; Machine Learning ; Optimization ; Screening ; screening rule ; Solvers</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-12, Vol.40 (12), p.2841-2852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</citedby><cites>FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</cites><orcidid>0000-0002-5222-3631 ; 0000-0002-8030-7138 ; 0000-0001-6363-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8119835$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seunghak</creatorcontrib><creatorcontrib>Gornitz, Nico</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Heckerman, David</creatorcontrib><creatorcontrib>Lippert, Christoph</creatorcontrib><title>Ensembles of Lasso Screening Rules</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Attorneys</subject><subject>Closed-form solutions</subject><subject>Computational efficiency</subject><subject>Computer Simulation</subject><subject>Databases, Factual</subject><subject>ensemble</subject><subject>Feature extraction</subject><subject>Half spaces</subject><subject>Heuristic algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lasso</subject><subject>Machine Learning</subject><subject>Optimization</subject><subject>Screening</subject><subject>screening rule</subject><subject>Solvers</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9LwzAUxYMobk6_gIIMffGlMzdp0uRFGGPqYKLofA5pezs7-mc2q-C3N3NzqBAI5PzuuffmEHIKdABA9fXsafgwGTAK0YBFUnAGe6QLmuuAC673SZeCZIFSTHXIkXMLSiEUlB-SDtNa-QNdcjGuHJZxga5fZ_2pda7uvyQNYpVX8_5z64VjcpDZwuHJ9u6R19vxbHQfTB_vJqPhNEi86ypIUxACNBMsozy1IRdKiVBYwaIsjVFmiX_SUqc0YRos46GkKKIYFapYUsF75Gbju2zjEtMEq1VjC7Ns8tI2n6a2ufmrVPmbmdcfRvqmlK0NrrYGTf3eoluZMncJFoWtsG6dYVQqLkBFkUcv_6GLum0qv55hwKmkkQiZp9iGSprauQaz3TBAzToC8x2BWUdgthH4ovPfa-xKfv7cA2cbIEfEnawAtJ-OfwG8dIiT</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lee, Seunghak</creator><creator>Gornitz, Nico</creator><creator>Xing, Eric P.</creator><creator>Heckerman, David</creator><creator>Lippert, Christoph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5222-3631</orcidid><orcidid>https://orcid.org/0000-0002-8030-7138</orcidid><orcidid>https://orcid.org/0000-0001-6363-2556</orcidid></search><sort><creationdate>20181201</creationdate><title>Ensembles of Lasso Screening Rules</title><author>Lee, Seunghak ; Gornitz, Nico ; Xing, Eric P. ; Heckerman, David ; Lippert, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-dd15519252f03da43588545a527fdbe6fc435969d0c291a23460e57be8e8b6053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Attorneys</topic><topic>Closed-form solutions</topic><topic>Computational efficiency</topic><topic>Computer Simulation</topic><topic>Databases, Factual</topic><topic>ensemble</topic><topic>Feature extraction</topic><topic>Half spaces</topic><topic>Heuristic algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lasso</topic><topic>Machine Learning</topic><topic>Optimization</topic><topic>Screening</topic><topic>screening rule</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seunghak</creatorcontrib><creatorcontrib>Gornitz, Nico</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Heckerman, David</creatorcontrib><creatorcontrib>Lippert, Christoph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seunghak</au><au>Gornitz, Nico</au><au>Xing, Eric P.</au><au>Heckerman, David</au><au>Lippert, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensembles of Lasso Screening Rules</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>40</volume><issue>12</issue><spage>2841</spage><epage>2852</epage><pages>2841-2852</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29989981</pmid><doi>10.1109/TPAMI.2017.2765321</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5222-3631</orcidid><orcidid>https://orcid.org/0000-0002-8030-7138</orcidid><orcidid>https://orcid.org/0000-0001-6363-2556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2018-12, Vol.40 (12), p.2841-2852
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_8119835
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Attorneys
Closed-form solutions
Computational efficiency
Computer Simulation
Databases, Factual
ensemble
Feature extraction
Half spaces
Heuristic algorithms
Humans
Image Processing, Computer-Assisted - methods
Lasso
Machine Learning
Optimization
Screening
screening rule
Solvers
title Ensembles of Lasso Screening Rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensembles%20of%20Lasso%20Screening%20Rules&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lee,%20Seunghak&rft.date=2018-12-01&rft.volume=40&rft.issue=12&rft.spage=2841&rft.epage=2852&rft.pages=2841-2852&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2017.2765321&rft_dat=%3Cproquest_ieee_%3E2130607542%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130607542&rft_id=info:pmid/29989981&rft_ieee_id=8119835&rfr_iscdi=true