Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems

We consider coding techniques that limit the lengths of homopolymer runs in strands of nucleotides used in DNA-based mass data storage systems. We compute the maximum number of user bits that can be stored per nucleotide when a maximum homopolymer runlength constraint is imposed. We describe simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-02, Vol.22 (2), p.224-227
Hauptverfasser: Schouhamer Immink, Kees A., Kui Cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 2
container_start_page 224
container_title IEEE communications letters
container_volume 22
creator Schouhamer Immink, Kees A.
Kui Cai
description We consider coding techniques that limit the lengths of homopolymer runs in strands of nucleotides used in DNA-based mass data storage systems. We compute the maximum number of user bits that can be stored per nucleotide when a maximum homopolymer runlength constraint is imposed. We describe simple and efficient implementations of coding techniques that avoid the occurrence of long homopolymers, and the rates of the constructed codes are close to the theoretical maximum. The proposed sequence replacement method for k-constrained q-ary data yields a significant improvement in coding redundancy than the prior art sequence replacement method for the k-constrained binary data. Using a simple transformation, standard binary maximum runlength limited sequences can be transformed into maximum runlength limited q-ary sequences which opens the door to applying the vast prior art binary code constructions to DNA-based storage.
doi_str_mv 10.1109/LCOMM.2017.2775608
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8115270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8115270</ieee_id><sourcerecordid>10_1109_LCOMM_2017_2775608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-89a9a46ad5271beb1571d179fc4b2288b6db84edcbd4ed67d8f4ae9064fa3e433</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7DJD7h4nIftZUl5SX0sCutoEo9LEE0iO5v-PS6t2Ny5GumMRoexexAzAGEel-VmtZpJAWomlcoLoS_YBPJccxnjMnahDVfK6Gt2E8K3EELLHCZsvaDQ7rqkd0mJAzbteODzYfA9Nl9tt0vKvgujx7YjG7ulkLjeJ4v1nD9hiLvt2HvcUbI9hJH24ZZdOfwJdHeeU_b58vxRvvHl5vW9nC95Iws1cm3QYFagzaWCmmrIFVhQxjVZLaXWdWFrnZFtahuzUFa7DMmIInOYUpamUyZPdxvfh-DJVYNv9-gPFYjqaKT6M1IdjVRnIxF6OEEtEf0DGiB-IdJfwAVdqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Schouhamer Immink, Kees A. ; Kui Cai</creator><creatorcontrib>Schouhamer Immink, Kees A. ; Kui Cai</creatorcontrib><description>We consider coding techniques that limit the lengths of homopolymer runs in strands of nucleotides used in DNA-based mass data storage systems. We compute the maximum number of user bits that can be stored per nucleotide when a maximum homopolymer runlength constraint is imposed. We describe simple and efficient implementations of coding techniques that avoid the occurrence of long homopolymers, and the rates of the constructed codes are close to the theoretical maximum. The proposed sequence replacement method for k-constrained q-ary data yields a significant improvement in coding redundancy than the prior art sequence replacement method for the k-constrained binary data. Using a simple transformation, standard binary maximum runlength limited sequences can be transformed into maximum runlength limited q-ary sequences which opens the door to applying the vast prior art binary code constructions to DNA-based storage.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2017.2775608</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel coding ; Data storage systems ; Decoding ; DNA ; Redundancy</subject><ispartof>IEEE communications letters, 2018-02, Vol.22 (2), p.224-227</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-89a9a46ad5271beb1571d179fc4b2288b6db84edcbd4ed67d8f4ae9064fa3e433</citedby><cites>FETCH-LOGICAL-c267t-89a9a46ad5271beb1571d179fc4b2288b6db84edcbd4ed67d8f4ae9064fa3e433</cites><orcidid>0000-0001-6747-9261 ; 0000-0003-2059-0071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8115270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8115270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schouhamer Immink, Kees A.</creatorcontrib><creatorcontrib>Kui Cai</creatorcontrib><title>Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>We consider coding techniques that limit the lengths of homopolymer runs in strands of nucleotides used in DNA-based mass data storage systems. We compute the maximum number of user bits that can be stored per nucleotide when a maximum homopolymer runlength constraint is imposed. We describe simple and efficient implementations of coding techniques that avoid the occurrence of long homopolymers, and the rates of the constructed codes are close to the theoretical maximum. The proposed sequence replacement method for k-constrained q-ary data yields a significant improvement in coding redundancy than the prior art sequence replacement method for the k-constrained binary data. Using a simple transformation, standard binary maximum runlength limited sequences can be transformed into maximum runlength limited q-ary sequences which opens the door to applying the vast prior art binary code constructions to DNA-based storage.</description><subject>Channel coding</subject><subject>Data storage systems</subject><subject>Decoding</subject><subject>DNA</subject><subject>Redundancy</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7DJD7h4nIftZUl5SX0sCutoEo9LEE0iO5v-PS6t2Ny5GumMRoexexAzAGEel-VmtZpJAWomlcoLoS_YBPJccxnjMnahDVfK6Gt2E8K3EELLHCZsvaDQ7rqkd0mJAzbteODzYfA9Nl9tt0vKvgujx7YjG7ulkLjeJ4v1nD9hiLvt2HvcUbI9hJH24ZZdOfwJdHeeU_b58vxRvvHl5vW9nC95Iws1cm3QYFagzaWCmmrIFVhQxjVZLaXWdWFrnZFtahuzUFa7DMmIInOYUpamUyZPdxvfh-DJVYNv9-gPFYjqaKT6M1IdjVRnIxF6OEEtEf0DGiB-IdJfwAVdqg</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Schouhamer Immink, Kees A.</creator><creator>Kui Cai</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6747-9261</orcidid><orcidid>https://orcid.org/0000-0003-2059-0071</orcidid></search><sort><creationdate>201802</creationdate><title>Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems</title><author>Schouhamer Immink, Kees A. ; Kui Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-89a9a46ad5271beb1571d179fc4b2288b6db84edcbd4ed67d8f4ae9064fa3e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channel coding</topic><topic>Data storage systems</topic><topic>Decoding</topic><topic>DNA</topic><topic>Redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schouhamer Immink, Kees A.</creatorcontrib><creatorcontrib>Kui Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schouhamer Immink, Kees A.</au><au>Kui Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-02</date><risdate>2018</risdate><volume>22</volume><issue>2</issue><spage>224</spage><epage>227</epage><pages>224-227</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>We consider coding techniques that limit the lengths of homopolymer runs in strands of nucleotides used in DNA-based mass data storage systems. We compute the maximum number of user bits that can be stored per nucleotide when a maximum homopolymer runlength constraint is imposed. We describe simple and efficient implementations of coding techniques that avoid the occurrence of long homopolymers, and the rates of the constructed codes are close to the theoretical maximum. The proposed sequence replacement method for k-constrained q-ary data yields a significant improvement in coding redundancy than the prior art sequence replacement method for the k-constrained binary data. Using a simple transformation, standard binary maximum runlength limited sequences can be transformed into maximum runlength limited q-ary sequences which opens the door to applying the vast prior art binary code constructions to DNA-based storage.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2017.2775608</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6747-9261</orcidid><orcidid>https://orcid.org/0000-0003-2059-0071</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-02, Vol.22 (2), p.224-227
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_8115270
source IEEE Electronic Library (IEL)
subjects Channel coding
Data storage systems
Decoding
DNA
Redundancy
title Design of Capacity-Approaching Constrained Codes for DNA-Based Storage Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Capacity-Approaching%20Constrained%20Codes%20for%20DNA-Based%20Storage%20Systems&rft.jtitle=IEEE%20communications%20letters&rft.au=Schouhamer%20Immink,%20Kees%20A.&rft.date=2018-02&rft.volume=22&rft.issue=2&rft.spage=224&rft.epage=227&rft.pages=224-227&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2017.2775608&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2017_2775608%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8115270&rfr_iscdi=true