Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy
We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via t...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2017-12, Vol.35 (24), p.5267-5275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5275 |
---|---|
container_issue | 24 |
container_start_page | 5267 |
container_title | Journal of lightwave technology |
container_volume | 35 |
creator | Qi, Yun Yang, Fan Lin, Yuechuan Jin, Wei Ho, Hoi Lut |
description | We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions. |
doi_str_mv | 10.1109/JLT.2017.2773121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8106787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106787</ieee_id><sourcerecordid>1981298162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3SSTnERK1UpRwXpe1s3EtrTZuNkq_feutHgY5vK-mY8nxCXCCBGqm6fZfCQBaSSJFEo8EgPM8zKVEtWxGAAplZYks1Nx1vcrAMyykgbi9tm07sd88-d2WXMyaRemtVwnrwsXXFiw35h1Mm0D-4a923Dwu-StYxu8663rdufipDHrni8Oeyje7yfz8WM6e3mYju9mqVVKhTQzlc1jO0OEVGABUAFwZTLmxprGsEICAhNb1h9YF40p8trWqMgWCrFSQ3G9v9t597XlPuiV2_o2vtRYlSjjFDJSsKdsrNd7bnTnlxvjdxpB_2nSUZP-06QPmmLkah9ZMvM_XiIUVJL6BSGxY20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981298162</pqid></control><display><type>article</type><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</creator><creatorcontrib>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</creatorcontrib><description>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2017.2773121</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acetylene ; Computer simulation ; Fiber optics ; Interferometry ; Nanofibers ; Optical pumping ; optical sensors ; Optical surface waves ; Optical waveguides ; Photonic band gaps ; Photonics ; Photothermal effects ; Refractivity ; Silicon compounds ; Silicon dioxide ; Spectroscopy ; Spectrum analysis</subject><ispartof>Journal of lightwave technology, 2017-12, Vol.35 (24), p.5267-5275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</citedby><cites>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi, Yun</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lin, Yuechuan</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ho, Hoi Lut</creatorcontrib><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</description><subject>Acetylene</subject><subject>Computer simulation</subject><subject>Fiber optics</subject><subject>Interferometry</subject><subject>Nanofibers</subject><subject>Optical pumping</subject><subject>optical sensors</subject><subject>Optical surface waves</subject><subject>Optical waveguides</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photothermal effects</subject><subject>Refractivity</subject><subject>Silicon compounds</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3SSTnERK1UpRwXpe1s3EtrTZuNkq_feutHgY5vK-mY8nxCXCCBGqm6fZfCQBaSSJFEo8EgPM8zKVEtWxGAAplZYks1Nx1vcrAMyykgbi9tm07sd88-d2WXMyaRemtVwnrwsXXFiw35h1Mm0D-4a923Dwu-StYxu8663rdufipDHrni8Oeyje7yfz8WM6e3mYju9mqVVKhTQzlc1jO0OEVGABUAFwZTLmxprGsEICAhNb1h9YF40p8trWqMgWCrFSQ3G9v9t597XlPuiV2_o2vtRYlSjjFDJSsKdsrNd7bnTnlxvjdxpB_2nSUZP-06QPmmLkah9ZMvM_XiIUVJL6BSGxY20</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Qi, Yun</creator><creator>Yang, Fan</creator><creator>Lin, Yuechuan</creator><creator>Jin, Wei</creator><creator>Ho, Hoi Lut</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171215</creationdate><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><author>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylene</topic><topic>Computer simulation</topic><topic>Fiber optics</topic><topic>Interferometry</topic><topic>Nanofibers</topic><topic>Optical pumping</topic><topic>optical sensors</topic><topic>Optical surface waves</topic><topic>Optical waveguides</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photothermal effects</topic><topic>Refractivity</topic><topic>Silicon compounds</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yun</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lin, Yuechuan</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ho, Hoi Lut</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Yun</au><au>Yang, Fan</au><au>Lin, Yuechuan</au><au>Jin, Wei</au><au>Ho, Hoi Lut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-12-15</date><risdate>2017</risdate><volume>35</volume><issue>24</issue><spage>5267</spage><epage>5275</epage><pages>5267-5275</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2017.2773121</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2017-12, Vol.35 (24), p.5267-5275 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8106787 |
source | IEEE Electronic Library (IEL) |
subjects | Acetylene Computer simulation Fiber optics Interferometry Nanofibers Optical pumping optical sensors Optical surface waves Optical waveguides Photonic band gaps Photonics Photothermal effects Refractivity Silicon compounds Silicon dioxide Spectroscopy Spectrum analysis |
title | Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanowaveguide%20Enhanced%20Photothermal%20Interferometry%20Spectroscopy&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Qi,%20Yun&rft.date=2017-12-15&rft.volume=35&rft.issue=24&rft.spage=5267&rft.epage=5275&rft.pages=5267-5275&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2017.2773121&rft_dat=%3Cproquest_RIE%3E1981298162%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981298162&rft_id=info:pmid/&rft_ieee_id=8106787&rfr_iscdi=true |