Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy

We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2017-12, Vol.35 (24), p.5267-5275
Hauptverfasser: Qi, Yun, Yang, Fan, Lin, Yuechuan, Jin, Wei, Ho, Hoi Lut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5275
container_issue 24
container_start_page 5267
container_title Journal of lightwave technology
container_volume 35
creator Qi, Yun
Yang, Fan
Lin, Yuechuan
Jin, Wei
Ho, Hoi Lut
description We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.
doi_str_mv 10.1109/JLT.2017.2773121
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8106787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106787</ieee_id><sourcerecordid>1981298162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3SSTnERK1UpRwXpe1s3EtrTZuNkq_feutHgY5vK-mY8nxCXCCBGqm6fZfCQBaSSJFEo8EgPM8zKVEtWxGAAplZYks1Nx1vcrAMyykgbi9tm07sd88-d2WXMyaRemtVwnrwsXXFiw35h1Mm0D-4a923Dwu-StYxu8663rdufipDHrni8Oeyje7yfz8WM6e3mYju9mqVVKhTQzlc1jO0OEVGABUAFwZTLmxprGsEICAhNb1h9YF40p8trWqMgWCrFSQ3G9v9t597XlPuiV2_o2vtRYlSjjFDJSsKdsrNd7bnTnlxvjdxpB_2nSUZP-06QPmmLkah9ZMvM_XiIUVJL6BSGxY20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981298162</pqid></control><display><type>article</type><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</creator><creatorcontrib>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</creatorcontrib><description>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2017.2773121</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acetylene ; Computer simulation ; Fiber optics ; Interferometry ; Nanofibers ; Optical pumping ; optical sensors ; Optical surface waves ; Optical waveguides ; Photonic band gaps ; Photonics ; Photothermal effects ; Refractivity ; Silicon compounds ; Silicon dioxide ; Spectroscopy ; Spectrum analysis</subject><ispartof>Journal of lightwave technology, 2017-12, Vol.35 (24), p.5267-5275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</citedby><cites>FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi, Yun</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lin, Yuechuan</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ho, Hoi Lut</creatorcontrib><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</description><subject>Acetylene</subject><subject>Computer simulation</subject><subject>Fiber optics</subject><subject>Interferometry</subject><subject>Nanofibers</subject><subject>Optical pumping</subject><subject>optical sensors</subject><subject>Optical surface waves</subject><subject>Optical waveguides</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photothermal effects</subject><subject>Refractivity</subject><subject>Silicon compounds</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpeA59SZ3SSTnERK1UpRwXpe1s3EtrTZuNkq_feutHgY5vK-mY8nxCXCCBGqm6fZfCQBaSSJFEo8EgPM8zKVEtWxGAAplZYks1Nx1vcrAMyykgbi9tm07sd88-d2WXMyaRemtVwnrwsXXFiw35h1Mm0D-4a923Dwu-StYxu8663rdufipDHrni8Oeyje7yfz8WM6e3mYju9mqVVKhTQzlc1jO0OEVGABUAFwZTLmxprGsEICAhNb1h9YF40p8trWqMgWCrFSQ3G9v9t597XlPuiV2_o2vtRYlSjjFDJSsKdsrNd7bnTnlxvjdxpB_2nSUZP-06QPmmLkah9ZMvM_XiIUVJL6BSGxY20</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Qi, Yun</creator><creator>Yang, Fan</creator><creator>Lin, Yuechuan</creator><creator>Jin, Wei</creator><creator>Ho, Hoi Lut</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20171215</creationdate><title>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</title><author>Qi, Yun ; Yang, Fan ; Lin, Yuechuan ; Jin, Wei ; Ho, Hoi Lut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4a9c5017a771761600900e9a4eefcafae317070a733db1d6fa65dcd137c631193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylene</topic><topic>Computer simulation</topic><topic>Fiber optics</topic><topic>Interferometry</topic><topic>Nanofibers</topic><topic>Optical pumping</topic><topic>optical sensors</topic><topic>Optical surface waves</topic><topic>Optical waveguides</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photothermal effects</topic><topic>Refractivity</topic><topic>Silicon compounds</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yun</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Lin, Yuechuan</creatorcontrib><creatorcontrib>Jin, Wei</creatorcontrib><creatorcontrib>Ho, Hoi Lut</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Yun</au><au>Yang, Fan</au><au>Lin, Yuechuan</au><au>Jin, Wei</au><au>Ho, Hoi Lut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-12-15</date><risdate>2017</risdate><volume>35</volume><issue>24</issue><spage>5267</spage><epage>5275</epage><pages>5267-5275</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We report a new optical nanowaveguide enhanced photothermal (PT) interferometry spectroscopy method for trace molecule detection. Absorption of pump evanescent field of an optical nanowaveguide heats up the trace molecules surrounding the waveguide, causing the temperature of waveguide to rise via thermal conduction and modulating the refractive index and dimension of the nanowaveguide. The phase of a probe beam propagating through the same nanowaveguide is then modulated and can be detected with optic fiber interferometry. Numerical simulation with silica, cyclic transparent optical polymer, and silicon nanowaveguides with proper dimensions can achieve PT index modulation of 10 to over 8000 times that of the commercial HC-1550-02 photonic bandgap fiber. Experiments with 12-mm-long, 800-nm-diamter silica nanofiber demonstrated a lower detection limit of 600 parts per billion (ppb) acetylene at ambient conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2017.2773121</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2017-12, Vol.35 (24), p.5267-5275
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_8106787
source IEEE Electronic Library (IEL)
subjects Acetylene
Computer simulation
Fiber optics
Interferometry
Nanofibers
Optical pumping
optical sensors
Optical surface waves
Optical waveguides
Photonic band gaps
Photonics
Photothermal effects
Refractivity
Silicon compounds
Silicon dioxide
Spectroscopy
Spectrum analysis
title Nanowaveguide Enhanced Photothermal Interferometry Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanowaveguide%20Enhanced%20Photothermal%20Interferometry%20Spectroscopy&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Qi,%20Yun&rft.date=2017-12-15&rft.volume=35&rft.issue=24&rft.spage=5267&rft.epage=5275&rft.pages=5267-5275&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2017.2773121&rft_dat=%3Cproquest_RIE%3E1981298162%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981298162&rft_id=info:pmid/&rft_ieee_id=8106787&rfr_iscdi=true