Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal
Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existenc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-03, Vol.27 (3), p.1448-1461 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 3 |
container_start_page | 1448 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Jin, Kyong Hwan Ye, Jong Chul |
description | Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in an image domain to estimate any missing pixels. By extending this idea, we propose a novel impulse-noise removal algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix. This method, referred to as the robust ALOHA, is based on the observation that an image corrupted with the impulse noise has intact pixels; consequently, the impulse noise can be modeled as sparse components, whereas the underlying image can still be modeled using a low-rank Hankel structured matrix. To solve the sparse and low-rank matrix decomposition problem, we propose an alternating direction method of multiplier approach, with initial factorized matrices coming from a low-rank matrix-fitting algorithm. To adapt local image statistics that have distinct spectral distributions, the robust ALOHA is applied in a patch-by-patch manner. Experimental results from impulse noise for both single-channel and multichannel color images demonstrate that the robust ALOHA is superior to existing approaches, especially during the reconstruction of complex texture patterns. |
doi_str_mv | 10.1109/TIP.2017.2771471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8101510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8101510</ieee_id><sourcerecordid>1980943226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-80b1f791163313bdea48d4a549e7ccb250a94d0c120b1646546dff240e2770f93</originalsourceid><addsrcrecordid>eNpdkElPwzAQhS0Eomx3JCRkiQuXlBnbWXxErJXKIloOnCw3caSUJA52wvLvMWrhwGU8mvfNk-cRcogwRgR5Np88jhlgOmZpiiLFDbKDUmAEINhm6CFOoyDIEdn1fgmAIsZkm4yYlBIwjnfIy6zTzhuq24JO7Uf0pNtXemly23TWV31lW2pLqultmJuazno35P3gTEHvdO-qT1paRydNN9TB5N5WoT6Zxr7rep9slTpMD9bvHnm-vppf3EbTh5vJxfk0yrlI-yiDBZapREw4R74ojBZZIXQspEnzfMFi0FIUkCMLYCKSWCRFWTIBJtwMpeR75HTl2zn7Nhjfq6byualr3Ro7eMUgyXi4m_OAnvxDl3ZwbfidQpmBFJyxJFCwonJnvXemVJ2rGu2-FIL6iV2F2NVP7Gode1g5XhsPi8YUfwu_OQfgaAVUxpg_OcMgIvBvsjGENQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980943226</pqid></control><display><type>article</type><title>Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Kyong Hwan ; Ye, Jong Chul</creator><creatorcontrib>Jin, Kyong Hwan ; Ye, Jong Chul</creatorcontrib><description>Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in an image domain to estimate any missing pixels. By extending this idea, we propose a novel impulse-noise removal algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix. This method, referred to as the robust ALOHA, is based on the observation that an image corrupted with the impulse noise has intact pixels; consequently, the impulse noise can be modeled as sparse components, whereas the underlying image can still be modeled using a low-rank Hankel structured matrix. To solve the sparse and low-rank matrix decomposition problem, we propose an alternating direction method of multiplier approach, with initial factorized matrices coming from a low-rank matrix-fitting algorithm. To adapt local image statistics that have distinct spectral distributions, the robust ALOHA is applied in a patch-by-patch manner. Experimental results from impulse noise for both single-channel and multichannel color images demonstrate that the robust ALOHA is superior to existing approaches, especially during the reconstruction of complex texture patterns.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2771471</identifier><identifier>PMID: 29990155</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>ADMM ; Annihilating filter ; Color imagery ; Convex functions ; Decomposition ; Frequency-domain analysis ; Hankel matrices ; Hankel matrix ; Image edge detection ; impuse noise ; Matrix decomposition ; Noise ; Noise reduction ; Pixels ; robust principal component analysis (RPCA) ; Robustness ; salt/pepper noise ; Smoothness ; sparse and low rank decomposition ; Sparse matrices</subject><ispartof>IEEE transactions on image processing, 2018-03, Vol.27 (3), p.1448-1461</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-80b1f791163313bdea48d4a549e7ccb250a94d0c120b1646546dff240e2770f93</citedby><cites>FETCH-LOGICAL-c347t-80b1f791163313bdea48d4a549e7ccb250a94d0c120b1646546dff240e2770f93</cites><orcidid>0000-0001-7885-4792 ; 0000-0001-9763-9609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8101510$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8101510$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29990155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Kyong Hwan</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in an image domain to estimate any missing pixels. By extending this idea, we propose a novel impulse-noise removal algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix. This method, referred to as the robust ALOHA, is based on the observation that an image corrupted with the impulse noise has intact pixels; consequently, the impulse noise can be modeled as sparse components, whereas the underlying image can still be modeled using a low-rank Hankel structured matrix. To solve the sparse and low-rank matrix decomposition problem, we propose an alternating direction method of multiplier approach, with initial factorized matrices coming from a low-rank matrix-fitting algorithm. To adapt local image statistics that have distinct spectral distributions, the robust ALOHA is applied in a patch-by-patch manner. Experimental results from impulse noise for both single-channel and multichannel color images demonstrate that the robust ALOHA is superior to existing approaches, especially during the reconstruction of complex texture patterns.</description><subject>ADMM</subject><subject>Annihilating filter</subject><subject>Color imagery</subject><subject>Convex functions</subject><subject>Decomposition</subject><subject>Frequency-domain analysis</subject><subject>Hankel matrices</subject><subject>Hankel matrix</subject><subject>Image edge detection</subject><subject>impuse noise</subject><subject>Matrix decomposition</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>robust principal component analysis (RPCA)</subject><subject>Robustness</subject><subject>salt/pepper noise</subject><subject>Smoothness</subject><subject>sparse and low rank decomposition</subject><subject>Sparse matrices</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkElPwzAQhS0Eomx3JCRkiQuXlBnbWXxErJXKIloOnCw3caSUJA52wvLvMWrhwGU8mvfNk-cRcogwRgR5Np88jhlgOmZpiiLFDbKDUmAEINhm6CFOoyDIEdn1fgmAIsZkm4yYlBIwjnfIy6zTzhuq24JO7Uf0pNtXemly23TWV31lW2pLqultmJuazno35P3gTEHvdO-qT1paRydNN9TB5N5WoT6Zxr7rep9slTpMD9bvHnm-vppf3EbTh5vJxfk0yrlI-yiDBZapREw4R74ojBZZIXQspEnzfMFi0FIUkCMLYCKSWCRFWTIBJtwMpeR75HTl2zn7Nhjfq6byualr3Ro7eMUgyXi4m_OAnvxDl3ZwbfidQpmBFJyxJFCwonJnvXemVJ2rGu2-FIL6iV2F2NVP7Gode1g5XhsPi8YUfwu_OQfgaAVUxpg_OcMgIvBvsjGENQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jin, Kyong Hwan</creator><creator>Ye, Jong Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7885-4792</orcidid><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid></search><sort><creationdate>20180301</creationdate><title>Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal</title><author>Jin, Kyong Hwan ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-80b1f791163313bdea48d4a549e7ccb250a94d0c120b1646546dff240e2770f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ADMM</topic><topic>Annihilating filter</topic><topic>Color imagery</topic><topic>Convex functions</topic><topic>Decomposition</topic><topic>Frequency-domain analysis</topic><topic>Hankel matrices</topic><topic>Hankel matrix</topic><topic>Image edge detection</topic><topic>impuse noise</topic><topic>Matrix decomposition</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>robust principal component analysis (RPCA)</topic><topic>Robustness</topic><topic>salt/pepper noise</topic><topic>Smoothness</topic><topic>sparse and low rank decomposition</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Kyong Hwan</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Kyong Hwan</au><au>Ye, Jong Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>27</volume><issue>3</issue><spage>1448</spage><epage>1461</epage><pages>1448-1461</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Recently, the annihilating filter-based low-rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch correspond to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in an image domain to estimate any missing pixels. By extending this idea, we propose a novel impulse-noise removal algorithm that uses the sparse and low-rank decomposition of a Hankel structured matrix. This method, referred to as the robust ALOHA, is based on the observation that an image corrupted with the impulse noise has intact pixels; consequently, the impulse noise can be modeled as sparse components, whereas the underlying image can still be modeled using a low-rank Hankel structured matrix. To solve the sparse and low-rank matrix decomposition problem, we propose an alternating direction method of multiplier approach, with initial factorized matrices coming from a low-rank matrix-fitting algorithm. To adapt local image statistics that have distinct spectral distributions, the robust ALOHA is applied in a patch-by-patch manner. Experimental results from impulse noise for both single-channel and multichannel color images demonstrate that the robust ALOHA is superior to existing approaches, especially during the reconstruction of complex texture patterns.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29990155</pmid><doi>10.1109/TIP.2017.2771471</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7885-4792</orcidid><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-03, Vol.27 (3), p.1448-1461 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_8101510 |
source | IEEE Electronic Library (IEL) |
subjects | ADMM Annihilating filter Color imagery Convex functions Decomposition Frequency-domain analysis Hankel matrices Hankel matrix Image edge detection impuse noise Matrix decomposition Noise Noise reduction Pixels robust principal component analysis (RPCA) Robustness salt/pepper noise Smoothness sparse and low rank decomposition Sparse matrices |
title | Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Low-Rank%20Decomposition%20of%20a%20Hankel%20Structured%20Matrix%20for%20Impulse%20Noise%20Removal&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jin,%20Kyong%20Hwan&rft.date=2018-03-01&rft.volume=27&rft.issue=3&rft.spage=1448&rft.epage=1461&rft.pages=1448-1461&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2771471&rft_dat=%3Cproquest_RIE%3E1980943226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980943226&rft_id=info:pmid/29990155&rft_ieee_id=8101510&rfr_iscdi=true |