Photonics-Assisted Millimeter-Wave Wireless Communication
High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technolo...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2017-12, Vol.53 (6), p.1-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE journal of quantum electronics |
container_volume | 53 |
creator | Yu, Jianjun |
description | High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices. |
doi_str_mv | 10.1109/JQE.2017.2765742 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8080206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8080206</ieee_id><sourcerecordid>10_1109_JQE_2017_2765742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</originalsourceid><addsrcrecordid>eNo9j11LwzAYhYMoWKf3gjf9A6nvmzRfl6NMp0xUUHYZ0jbFSLtKUgX_vR0bXh0OPOfAQ8g1QoEI5vbxdVUwQFUwJYUq2QnJUAhNUSE_JRkAamrQqHNykdLnXMtSQ0bMy8c4jbvQJLpMKaTJt_lT6Psw-MlHunU_Pt-G6HufUl6Nw_A9s24K4-6SnHWuT_7qmAvyfrd6q9Z083z_UC03tOEIE3WKMdAOZSNFx0uOtXDAFBdSoMFSyloaI1QHUOvalG3rNZdopJsxV2vHFwQOv00cU4q-s18xDC7-WgS7V7ezut2r26P6PLk5TIL3_h_XoIGB5H-tMVP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jianjun</creator><creatorcontrib>Yu, Jianjun</creatorcontrib><description>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2017.2765742</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>antenna polarization multiplexing ; Broadband communication ; coherent detection ; digital signal processing ; fiber wireless integration ; heterodyne detection ; millimeter-wave communication ; Modulation ; multi-level modulation ; OFDM ; Optical fiber communication ; Optical mixing ; Optical polarization ; phase precoding ; photonics-assisted millimeter-wave generation ; polarization multiplexing ; Wireless communication</subject><ispartof>IEEE journal of quantum electronics, 2017-12, Vol.53 (6), p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</citedby><cites>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</cites><orcidid>0000-0003-4080-9077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8080206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8080206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jianjun</creatorcontrib><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</description><subject>antenna polarization multiplexing</subject><subject>Broadband communication</subject><subject>coherent detection</subject><subject>digital signal processing</subject><subject>fiber wireless integration</subject><subject>heterodyne detection</subject><subject>millimeter-wave communication</subject><subject>Modulation</subject><subject>multi-level modulation</subject><subject>OFDM</subject><subject>Optical fiber communication</subject><subject>Optical mixing</subject><subject>Optical polarization</subject><subject>phase precoding</subject><subject>photonics-assisted millimeter-wave generation</subject><subject>polarization multiplexing</subject><subject>Wireless communication</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j11LwzAYhYMoWKf3gjf9A6nvmzRfl6NMp0xUUHYZ0jbFSLtKUgX_vR0bXh0OPOfAQ8g1QoEI5vbxdVUwQFUwJYUq2QnJUAhNUSE_JRkAamrQqHNykdLnXMtSQ0bMy8c4jbvQJLpMKaTJt_lT6Psw-MlHunU_Pt-G6HufUl6Nw_A9s24K4-6SnHWuT_7qmAvyfrd6q9Z083z_UC03tOEIE3WKMdAOZSNFx0uOtXDAFBdSoMFSyloaI1QHUOvalG3rNZdopJsxV2vHFwQOv00cU4q-s18xDC7-WgS7V7ezut2r26P6PLk5TIL3_h_XoIGB5H-tMVP0</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yu, Jianjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4080-9077</orcidid></search><sort><creationdate>201712</creationdate><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><author>Yu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>antenna polarization multiplexing</topic><topic>Broadband communication</topic><topic>coherent detection</topic><topic>digital signal processing</topic><topic>fiber wireless integration</topic><topic>heterodyne detection</topic><topic>millimeter-wave communication</topic><topic>Modulation</topic><topic>multi-level modulation</topic><topic>OFDM</topic><topic>Optical fiber communication</topic><topic>Optical mixing</topic><topic>Optical polarization</topic><topic>phase precoding</topic><topic>photonics-assisted millimeter-wave generation</topic><topic>polarization multiplexing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jianjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonics-Assisted Millimeter-Wave Wireless Communication</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2017-12</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2017.2765742</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4080-9077</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2017-12, Vol.53 (6), p.1-17 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_ieee_primary_8080206 |
source | IEEE Electronic Library (IEL) |
subjects | antenna polarization multiplexing Broadband communication coherent detection digital signal processing fiber wireless integration heterodyne detection millimeter-wave communication Modulation multi-level modulation OFDM Optical fiber communication Optical mixing Optical polarization phase precoding photonics-assisted millimeter-wave generation polarization multiplexing Wireless communication |
title | Photonics-Assisted Millimeter-Wave Wireless Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T21%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonics-Assisted%20Millimeter-Wave%20Wireless%20Communication&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Yu,%20Jianjun&rft.date=2017-12&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2017.2765742&rft_dat=%3Ccrossref_RIE%3E10_1109_JQE_2017_2765742%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8080206&rfr_iscdi=true |