Photonics-Assisted Millimeter-Wave Wireless Communication

High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2017-12, Vol.53 (6), p.1-17
1. Verfasser: Yu, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 6
container_start_page 1
container_title IEEE journal of quantum electronics
container_volume 53
creator Yu, Jianjun
description High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.
doi_str_mv 10.1109/JQE.2017.2765742
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8080206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8080206</ieee_id><sourcerecordid>10_1109_JQE_2017_2765742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</originalsourceid><addsrcrecordid>eNo9j11LwzAYhYMoWKf3gjf9A6nvmzRfl6NMp0xUUHYZ0jbFSLtKUgX_vR0bXh0OPOfAQ8g1QoEI5vbxdVUwQFUwJYUq2QnJUAhNUSE_JRkAamrQqHNykdLnXMtSQ0bMy8c4jbvQJLpMKaTJt_lT6Psw-MlHunU_Pt-G6HufUl6Nw_A9s24K4-6SnHWuT_7qmAvyfrd6q9Z083z_UC03tOEIE3WKMdAOZSNFx0uOtXDAFBdSoMFSyloaI1QHUOvalG3rNZdopJsxV2vHFwQOv00cU4q-s18xDC7-WgS7V7ezut2r26P6PLk5TIL3_h_XoIGB5H-tMVP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Jianjun</creator><creatorcontrib>Yu, Jianjun</creatorcontrib><description>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2017.2765742</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>antenna polarization multiplexing ; Broadband communication ; coherent detection ; digital signal processing ; fiber wireless integration ; heterodyne detection ; millimeter-wave communication ; Modulation ; multi-level modulation ; OFDM ; Optical fiber communication ; Optical mixing ; Optical polarization ; phase precoding ; photonics-assisted millimeter-wave generation ; polarization multiplexing ; Wireless communication</subject><ispartof>IEEE journal of quantum electronics, 2017-12, Vol.53 (6), p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</citedby><cites>FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</cites><orcidid>0000-0003-4080-9077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8080206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8080206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Jianjun</creatorcontrib><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</description><subject>antenna polarization multiplexing</subject><subject>Broadband communication</subject><subject>coherent detection</subject><subject>digital signal processing</subject><subject>fiber wireless integration</subject><subject>heterodyne detection</subject><subject>millimeter-wave communication</subject><subject>Modulation</subject><subject>multi-level modulation</subject><subject>OFDM</subject><subject>Optical fiber communication</subject><subject>Optical mixing</subject><subject>Optical polarization</subject><subject>phase precoding</subject><subject>photonics-assisted millimeter-wave generation</subject><subject>polarization multiplexing</subject><subject>Wireless communication</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j11LwzAYhYMoWKf3gjf9A6nvmzRfl6NMp0xUUHYZ0jbFSLtKUgX_vR0bXh0OPOfAQ8g1QoEI5vbxdVUwQFUwJYUq2QnJUAhNUSE_JRkAamrQqHNykdLnXMtSQ0bMy8c4jbvQJLpMKaTJt_lT6Psw-MlHunU_Pt-G6HufUl6Nw_A9s24K4-6SnHWuT_7qmAvyfrd6q9Z083z_UC03tOEIE3WKMdAOZSNFx0uOtXDAFBdSoMFSyloaI1QHUOvalG3rNZdopJsxV2vHFwQOv00cU4q-s18xDC7-WgS7V7ezut2r26P6PLk5TIL3_h_XoIGB5H-tMVP0</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yu, Jianjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4080-9077</orcidid></search><sort><creationdate>201712</creationdate><title>Photonics-Assisted Millimeter-Wave Wireless Communication</title><author>Yu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a72208a16c65f3431b5a0273565191466b69957f00b8b94dde836196a5a0ab8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>antenna polarization multiplexing</topic><topic>Broadband communication</topic><topic>coherent detection</topic><topic>digital signal processing</topic><topic>fiber wireless integration</topic><topic>heterodyne detection</topic><topic>millimeter-wave communication</topic><topic>Modulation</topic><topic>multi-level modulation</topic><topic>OFDM</topic><topic>Optical fiber communication</topic><topic>Optical mixing</topic><topic>Optical polarization</topic><topic>phase precoding</topic><topic>photonics-assisted millimeter-wave generation</topic><topic>polarization multiplexing</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jianjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonics-Assisted Millimeter-Wave Wireless Communication</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2017-12</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>High-speed millimeter-wave (mm-wave) wireless transmission at 40 Gb/s or higher will be required in the near future. Due to bottleneck in electrical devices, mm-wave wireless signal at such high bit rates cannot be generated in an all-electrical method. Photonics-assisted mm-wave generation technology has become an effective solution to handle this problem of bandwidth limitation. Recent efforts with a single modulator to generate optical mm-wave signal largely simplify the architecture of the optical transmitter. Heterodyne detection based on advanced digital signal processing can overcome nonlinear effects in optical and electrical devices, and it also can improve the spectral efficiency and receiver sensitivity. Multidimensional multiplexing techniques can reduce the baud rate of each subchannel, and hence it can realize mm-wave signal long distance transmission. In this tutorial, we will describe these key enabling technologies and principle for the realization of ultrahigh speed, large capacity mm-wave signal transmission. These enabling technologies can effectively improve the transmission capacity and distance, as well as reduce the required bandwidth for optical and electrical devices.</abstract><pub>IEEE</pub><doi>10.1109/JQE.2017.2765742</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4080-9077</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2017-12, Vol.53 (6), p.1-17
issn 0018-9197
1558-1713
language eng
recordid cdi_ieee_primary_8080206
source IEEE Electronic Library (IEL)
subjects antenna polarization multiplexing
Broadband communication
coherent detection
digital signal processing
fiber wireless integration
heterodyne detection
millimeter-wave communication
Modulation
multi-level modulation
OFDM
Optical fiber communication
Optical mixing
Optical polarization
phase precoding
photonics-assisted millimeter-wave generation
polarization multiplexing
Wireless communication
title Photonics-Assisted Millimeter-Wave Wireless Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T21%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonics-Assisted%20Millimeter-Wave%20Wireless%20Communication&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Yu,%20Jianjun&rft.date=2017-12&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2017.2765742&rft_dat=%3Ccrossref_RIE%3E10_1109_JQE_2017_2765742%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8080206&rfr_iscdi=true