IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics
Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data repres...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2018-04, Vol.20 (4), p.1024-1032 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 4 |
container_start_page | 1024 |
container_title | IEEE transactions on multimedia |
container_volume | 20 |
creator | Yang, Yimin Pouyanfar, Samira Tian, Haiman Chen, Min Chen, Shu-Ching Shyu, Mei-Ling |
description | Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data represents the concept of interest as has occurred in many real-world applications such as frauds in banking transactions and goal events in soccer videos. Traditional data mining approaches often have difficulty handling largely skewed data distributions. To address this issue, in this paper, an importance-factor (IF)-based multiple correspondence analysis (MCA) framework is proposed to deal with the imbalanced datasets. Specifically, a hierarchical information gain analysis method, which is inspired by the decision tree algorithm, is presented for critical feature selection and IF assignment. Then, the derived IF is incorporated with the MCA algorithm for effective concept detection and retrieval. The comparison results in video concept detection using the disaster dataset and the soccer dataset demonstrate the effectiveness of the proposed framework. |
doi_str_mv | 10.1109/TMM.2017.2760623 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8060571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8060571</ieee_id><sourcerecordid>10_1109_TMM_2017_2760623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3b7cab1704ed0051a275ec757376cf4a3ac3325991f82faeeee56bb45b338d6b3</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqWwI7HkBVzu7NhO2EpooVIjlrISXRxHCkqayA5D355UqbjlTrrv_4ePsUeEFSKkz4c8XwlAsxJGgxbyii0wjZEDGHM93UoATwXCLbsL4QcAYwVmwb53W55n65do1w29H-loXbQlO_aev1JwVZT_tmMztC7Keu9dGPpj5c7Q-kjtKTQhqns_Q52rGoreaKT5OTY23LObmtrgHi57yb62m0P2wfef77tsvedWaDlyWRpLJRqIXQWgkIRRzhplpNG2jkmSlVKoNMU6ETW5aZQuy1iVUiaVLuWSwdxrfR-Cd3Ux-KYjfyoQirOfYvJTnP0UFz9T5GmONFPbP56ABmVQ_gGukmHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Yimin ; Pouyanfar, Samira ; Tian, Haiman ; Chen, Min ; Chen, Shu-Ching ; Shyu, Mei-Ling</creator><creatorcontrib>Yang, Yimin ; Pouyanfar, Samira ; Tian, Haiman ; Chen, Min ; Chen, Shu-Ching ; Shyu, Mei-Ling</creatorcontrib><description>Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data represents the concept of interest as has occurred in many real-world applications such as frauds in banking transactions and goal events in soccer videos. Traditional data mining approaches often have difficulty handling largely skewed data distributions. To address this issue, in this paper, an importance-factor (IF)-based multiple correspondence analysis (MCA) framework is proposed to deal with the imbalanced datasets. Specifically, a hierarchical information gain analysis method, which is inspired by the decision tree algorithm, is presented for critical feature selection and IF assignment. Then, the derived IF is incorporated with the MCA algorithm for effective concept detection and retrieval. The comparison results in video concept detection using the disaster dataset and the soccer dataset demonstrate the effectiveness of the proposed framework.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2017.2760623</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data mining ; Decision trees ; Feature extraction ; feature selection ; Importance factor ; information gain ; Multimedia communication ; multiple correspondence analysis (MCA) ; Testing ; Training</subject><ispartof>IEEE transactions on multimedia, 2018-04, Vol.20 (4), p.1024-1032</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-3b7cab1704ed0051a275ec757376cf4a3ac3325991f82faeeee56bb45b338d6b3</citedby><cites>FETCH-LOGICAL-c263t-3b7cab1704ed0051a275ec757376cf4a3ac3325991f82faeeee56bb45b338d6b3</cites><orcidid>0000-0003-0902-0844 ; 0000-0002-8363-8514 ; 0000-0001-9209-390X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8060571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8060571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Yimin</creatorcontrib><creatorcontrib>Pouyanfar, Samira</creatorcontrib><creatorcontrib>Tian, Haiman</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Shu-Ching</creatorcontrib><creatorcontrib>Shyu, Mei-Ling</creatorcontrib><title>IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data represents the concept of interest as has occurred in many real-world applications such as frauds in banking transactions and goal events in soccer videos. Traditional data mining approaches often have difficulty handling largely skewed data distributions. To address this issue, in this paper, an importance-factor (IF)-based multiple correspondence analysis (MCA) framework is proposed to deal with the imbalanced datasets. Specifically, a hierarchical information gain analysis method, which is inspired by the decision tree algorithm, is presented for critical feature selection and IF assignment. Then, the derived IF is incorporated with the MCA algorithm for effective concept detection and retrieval. The comparison results in video concept detection using the disaster dataset and the soccer dataset demonstrate the effectiveness of the proposed framework.</description><subject>Algorithm design and analysis</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Importance factor</subject><subject>information gain</subject><subject>Multimedia communication</subject><subject>multiple correspondence analysis (MCA)</subject><subject>Testing</subject><subject>Training</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAQhi0EEqWwI7HkBVzu7NhO2EpooVIjlrISXRxHCkqayA5D355UqbjlTrrv_4ePsUeEFSKkz4c8XwlAsxJGgxbyii0wjZEDGHM93UoATwXCLbsL4QcAYwVmwb53W55n65do1w29H-loXbQlO_aev1JwVZT_tmMztC7Keu9dGPpj5c7Q-kjtKTQhqns_Q52rGoreaKT5OTY23LObmtrgHi57yb62m0P2wfef77tsvedWaDlyWRpLJRqIXQWgkIRRzhplpNG2jkmSlVKoNMU6ETW5aZQuy1iVUiaVLuWSwdxrfR-Cd3Ux-KYjfyoQirOfYvJTnP0UFz9T5GmONFPbP56ABmVQ_gGukmHB</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Yang, Yimin</creator><creator>Pouyanfar, Samira</creator><creator>Tian, Haiman</creator><creator>Chen, Min</creator><creator>Chen, Shu-Ching</creator><creator>Shyu, Mei-Ling</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0902-0844</orcidid><orcidid>https://orcid.org/0000-0002-8363-8514</orcidid><orcidid>https://orcid.org/0000-0001-9209-390X</orcidid></search><sort><creationdate>201804</creationdate><title>IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics</title><author>Yang, Yimin ; Pouyanfar, Samira ; Tian, Haiman ; Chen, Min ; Chen, Shu-Ching ; Shyu, Mei-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3b7cab1704ed0051a275ec757376cf4a3ac3325991f82faeeee56bb45b338d6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Importance factor</topic><topic>information gain</topic><topic>Multimedia communication</topic><topic>multiple correspondence analysis (MCA)</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yimin</creatorcontrib><creatorcontrib>Pouyanfar, Samira</creatorcontrib><creatorcontrib>Tian, Haiman</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Chen, Shu-Ching</creatorcontrib><creatorcontrib>Shyu, Mei-Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Yimin</au><au>Pouyanfar, Samira</au><au>Tian, Haiman</au><au>Chen, Min</au><au>Chen, Shu-Ching</au><au>Shyu, Mei-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2018-04</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1024</spage><epage>1032</epage><pages>1024-1032</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data represents the concept of interest as has occurred in many real-world applications such as frauds in banking transactions and goal events in soccer videos. Traditional data mining approaches often have difficulty handling largely skewed data distributions. To address this issue, in this paper, an importance-factor (IF)-based multiple correspondence analysis (MCA) framework is proposed to deal with the imbalanced datasets. Specifically, a hierarchical information gain analysis method, which is inspired by the decision tree algorithm, is presented for critical feature selection and IF assignment. Then, the derived IF is incorporated with the MCA algorithm for effective concept detection and retrieval. The comparison results in video concept detection using the disaster dataset and the soccer dataset demonstrate the effectiveness of the proposed framework.</abstract><pub>IEEE</pub><doi>10.1109/TMM.2017.2760623</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0902-0844</orcidid><orcidid>https://orcid.org/0000-0002-8363-8514</orcidid><orcidid>https://orcid.org/0000-0001-9209-390X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2018-04, Vol.20 (4), p.1024-1032 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_8060571 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Data mining Decision trees Feature extraction feature selection Importance factor information gain Multimedia communication multiple correspondence analysis (MCA) Testing Training |
title | IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IF-MCA:%20Importance%20Factor-Based%20Multiple%20Correspondence%20Analysis%20for%20Multimedia%20Data%20Analytics&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Yang,%20Yimin&rft.date=2018-04&rft.volume=20&rft.issue=4&rft.spage=1024&rft.epage=1032&rft.pages=1024-1032&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2017.2760623&rft_dat=%3Ccrossref_RIE%3E10_1109_TMM_2017_2760623%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8060571&rfr_iscdi=true |