Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments
In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. H...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nautsch, Andreas Steen, Soren Trads Busch, Christoph |
description | In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. Hence, in this work we motivate score normalization utilizing deep neural networks. Considering unconstrained environments, a quality-informed scheme is proposed, normalizing scores depending on sample quality estimates in terms of completeness and signal degradation by noise. Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we aim at mimicking cohort based score normalization optimizing the minCllr discrimination criterion. Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled 55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of minCllr. Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when conditions comprising lower quality samples are not available during training. |
doi_str_mv | 10.23919/BIOSIG.2017.8053501 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_8053501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8053501</ieee_id><sourcerecordid>8053501</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a8ca140494d24d663323558e58df5d3a53e90d22f21b3bbc5f219cd1e0ed67053</originalsourceid><addsrcrecordid>eNotUM1OwzAYC0hITLAngENeoCM_zd8RxjYqTQzYOE9Z8hUFtrRKy6Ty9EQwX2zLlg9G6JaSCeOGmruHarWuFhNGqJpoIrgg9AyNjdJca6GMlCU5RyMqqSpEKfUlGnfdJ8lQhAmlR6h9BGjx67fdh34oqlg36QAer12TAD9nk4Mf24cm4hzhlxSO1g3FPAWIfj_gdQv2CxJ-A9d8xPBXDBG_R9fErk82xLw2i8eQmniA2HfX6KK2-w7GJ75Cm_lsM30qlqtFNb1fFsGQvrDaWVqS0pSelV5KzhkXQoPQvhaeW8HBEM9YzeiO73ZOZGGcp0DAS5WPuEI3_7MBALZtCgebhu3pIv4LwqBdJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nautsch, Andreas ; Steen, Soren Trads ; Busch, Christoph</creator><creatorcontrib>Nautsch, Andreas ; Steen, Soren Trads ; Busch, Christoph</creatorcontrib><description>In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. Hence, in this work we motivate score normalization utilizing deep neural networks. Considering unconstrained environments, a quality-informed scheme is proposed, normalizing scores depending on sample quality estimates in terms of completeness and signal degradation by noise. Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we aim at mimicking cohort based score normalization optimizing the minCllr discrimination criterion. Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled 55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of minCllr. Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when conditions comprising lower quality samples are not available during training.</description><identifier>EISSN: 1617-5468</identifier><identifier>EISBN: 9783885796640</identifier><identifier>EISBN: 3885796643</identifier><identifier>DOI: 10.23919/BIOSIG.2017.8053501</identifier><language>eng</language><publisher>Gesellschaft fuer Informatik</publisher><subject>Biometrics (access control) ; Gain ; Neural networks ; Probes ; Robustness ; Speaker recognition ; Training</subject><ispartof>2017 International Conference of the Biometrics Special Interest Group (BIOSIG), 2017, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,27925</link.rule.ids></links><search><creatorcontrib>Nautsch, Andreas</creatorcontrib><creatorcontrib>Steen, Soren Trads</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><title>Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments</title><title>2017 International Conference of the Biometrics Special Interest Group (BIOSIG)</title><addtitle>BIOSIG</addtitle><description>In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. Hence, in this work we motivate score normalization utilizing deep neural networks. Considering unconstrained environments, a quality-informed scheme is proposed, normalizing scores depending on sample quality estimates in terms of completeness and signal degradation by noise. Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we aim at mimicking cohort based score normalization optimizing the minCllr discrimination criterion. Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled 55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of minCllr. Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when conditions comprising lower quality samples are not available during training.</description><subject>Biometrics (access control)</subject><subject>Gain</subject><subject>Neural networks</subject><subject>Probes</subject><subject>Robustness</subject><subject>Speaker recognition</subject><subject>Training</subject><issn>1617-5468</issn><isbn>9783885796640</isbn><isbn>3885796643</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1OwzAYC0hITLAngENeoCM_zd8RxjYqTQzYOE9Z8hUFtrRKy6Ty9EQwX2zLlg9G6JaSCeOGmruHarWuFhNGqJpoIrgg9AyNjdJca6GMlCU5RyMqqSpEKfUlGnfdJ8lQhAmlR6h9BGjx67fdh34oqlg36QAer12TAD9nk4Mf24cm4hzhlxSO1g3FPAWIfj_gdQv2CxJ-A9d8xPBXDBG_R9fErk82xLw2i8eQmniA2HfX6KK2-w7GJ75Cm_lsM30qlqtFNb1fFsGQvrDaWVqS0pSelV5KzhkXQoPQvhaeW8HBEM9YzeiO73ZOZGGcp0DAS5WPuEI3_7MBALZtCgebhu3pIv4LwqBdJw</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Nautsch, Andreas</creator><creator>Steen, Soren Trads</creator><creator>Busch, Christoph</creator><general>Gesellschaft fuer Informatik</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201709</creationdate><title>Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments</title><author>Nautsch, Andreas ; Steen, Soren Trads ; Busch, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a8ca140494d24d663323558e58df5d3a53e90d22f21b3bbc5f219cd1e0ed67053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biometrics (access control)</topic><topic>Gain</topic><topic>Neural networks</topic><topic>Probes</topic><topic>Robustness</topic><topic>Speaker recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Nautsch, Andreas</creatorcontrib><creatorcontrib>Steen, Soren Trads</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nautsch, Andreas</au><au>Steen, Soren Trads</au><au>Busch, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments</atitle><btitle>2017 International Conference of the Biometrics Special Interest Group (BIOSIG)</btitle><stitle>BIOSIG</stitle><date>2017-09</date><risdate>2017</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1617-5468</eissn><eisbn>9783885796640</eisbn><eisbn>3885796643</eisbn><abstract>In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. Hence, in this work we motivate score normalization utilizing deep neural networks. Considering unconstrained environments, a quality-informed scheme is proposed, normalizing scores depending on sample quality estimates in terms of completeness and signal degradation by noise. Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we aim at mimicking cohort based score normalization optimizing the minCllr discrimination criterion. Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled 55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of minCllr. Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when conditions comprising lower quality samples are not available during training.</abstract><pub>Gesellschaft fuer Informatik</pub><doi>10.23919/BIOSIG.2017.8053501</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1617-5468 |
ispartof | 2017 International Conference of the Biometrics Special Interest Group (BIOSIG), 2017, p.1-4 |
issn | 1617-5468 |
language | eng |
recordid | cdi_ieee_primary_8053501 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Biometrics (access control) Gain Neural networks Probes Robustness Speaker recognition Training |
title | Deep Quality-Informed Score Normalization for Privacy-Friendly Speaker Recognition in Unconstrained Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Quality-Informed%20Score%20Normalization%20for%20Privacy-Friendly%20Speaker%20Recognition%20in%20Unconstrained%20Environments&rft.btitle=2017%20International%20Conference%20of%20the%20Biometrics%20Special%20Interest%20Group%20(BIOSIG)&rft.au=Nautsch,%20Andreas&rft.date=2017-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1617-5468&rft_id=info:doi/10.23919/BIOSIG.2017.8053501&rft_dat=%3Cieee%3E8053501%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783885796640&rft.eisbn_list=3885796643&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8053501&rfr_iscdi=true |