Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner

Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-11, Vol.14 (11), p.2037-2041
Hauptverfasser: Li, Xiaobin, Wang, Shengjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2041
container_issue 11
container_start_page 2037
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Li, Xiaobin
Wang, Shengjin
description Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.
doi_str_mv 10.1109/LGRS.2017.2749478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8051277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8051277</ieee_id><sourcerecordid>1956443739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcpRqq1AtqAVvIU0nsrVuarKr-Pbu2uLpH4bvH4aPkHOgIwCqr2bTp-cRoyBHTHLNpTogAxBC5VRIOOxnLnKh1esxOUlpTSnjSskBmc-Xa3RNdoNNF1Wos0Wq6rdsHOqvsGn7jd1kj9jGv2i-Q3xPWVVntkNsTJg3IZ9UNWYPtq4xnpIjbzcJz_Y5JIvJ7cv4Lp_Np_fj61numC6aHEE7ZYWwS-aUXpYgPZeUUtBQOll68JI5oM56ZVdQohbcg0S7ouARbVEMyeXu7jaGzxZTY9ahjd2vyYAWJeeFLHRHwY5yMaQU0ZttrD5s_DFATe_N9N5M783svXWdi12nQsR_XlEBTMriF74caU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956443739</pqid></control><display><type>article</type><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiaobin ; Wang, Shengjin</creator><creatorcontrib>Li, Xiaobin ; Wang, Shengjin</creatorcontrib><description>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2749478</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft industry ; Airplanes ; Artificial neural networks ; Convolutional neural network (CNN) ; Detection ; Earth ; Feature extraction ; Frameworks ; Image detection ; Marine vehicles ; Market shares ; Methods ; Neural networks ; Object detection ; Object recognition ; Orientation ; Proposals ; Regions ; Remote sensing ; Ships ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.2037-2041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</citedby><cites>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</cites><orcidid>0000-0001-9283-2311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8051277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8051277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiaobin</creatorcontrib><creatorcontrib>Wang, Shengjin</creatorcontrib><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</description><subject>Aircraft industry</subject><subject>Airplanes</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>Frameworks</subject><subject>Image detection</subject><subject>Marine vehicles</subject><subject>Market shares</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Orientation</subject><subject>Proposals</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Ships</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcpRqq1AtqAVvIU0nsrVuarKr-Pbu2uLpH4bvH4aPkHOgIwCqr2bTp-cRoyBHTHLNpTogAxBC5VRIOOxnLnKh1esxOUlpTSnjSskBmc-Xa3RNdoNNF1Wos0Wq6rdsHOqvsGn7jd1kj9jGv2i-Q3xPWVVntkNsTJg3IZ9UNWYPtq4xnpIjbzcJz_Y5JIvJ7cv4Lp_Np_fj61numC6aHEE7ZYWwS-aUXpYgPZeUUtBQOll68JI5oM56ZVdQohbcg0S7ouARbVEMyeXu7jaGzxZTY9ahjd2vyYAWJeeFLHRHwY5yMaQU0ZttrD5s_DFATe_N9N5M783svXWdi12nQsR_XlEBTMriF74caU8</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Li, Xiaobin</creator><creator>Wang, Shengjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9283-2311</orcidid></search><sort><creationdate>20171101</creationdate><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><author>Li, Xiaobin ; Wang, Shengjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aircraft industry</topic><topic>Airplanes</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>Frameworks</topic><topic>Image detection</topic><topic>Marine vehicles</topic><topic>Market shares</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Orientation</topic><topic>Proposals</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Ships</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaobin</creatorcontrib><creatorcontrib>Wang, Shengjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiaobin</au><au>Wang, Shengjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>11</issue><spage>2037</spage><epage>2041</epage><pages>2037-2041</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2749478</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9283-2311</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.2037-2041
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8051277
source IEEE Electronic Library (IEL)
subjects Aircraft industry
Airplanes
Artificial neural networks
Convolutional neural network (CNN)
Detection
Earth
Feature extraction
Frameworks
Image detection
Marine vehicles
Market shares
Methods
Neural networks
Object detection
Object recognition
Orientation
Proposals
Regions
Remote sensing
Ships
Training
title Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Detection%20Using%20Convolutional%20Neural%20Networks%20in%20a%20Coarse-to-Fine%20Manner&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Xiaobin&rft.date=2017-11-01&rft.volume=14&rft.issue=11&rft.spage=2037&rft.epage=2041&rft.pages=2037-2041&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2749478&rft_dat=%3Cproquest_RIE%3E1956443739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956443739&rft_id=info:pmid/&rft_ieee_id=8051277&rfr_iscdi=true