Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner
Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse st...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-11, Vol.14 (11), p.2037-2041 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2041 |
---|---|
container_issue | 11 |
container_start_page | 2037 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Li, Xiaobin Wang, Shengjin |
description | Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods. |
doi_str_mv | 10.1109/LGRS.2017.2749478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8051277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8051277</ieee_id><sourcerecordid>1956443739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcpRqq1AtqAVvIU0nsrVuarKr-Pbu2uLpH4bvH4aPkHOgIwCqr2bTp-cRoyBHTHLNpTogAxBC5VRIOOxnLnKh1esxOUlpTSnjSskBmc-Xa3RNdoNNF1Wos0Wq6rdsHOqvsGn7jd1kj9jGv2i-Q3xPWVVntkNsTJg3IZ9UNWYPtq4xnpIjbzcJz_Y5JIvJ7cv4Lp_Np_fj61numC6aHEE7ZYWwS-aUXpYgPZeUUtBQOll68JI5oM56ZVdQohbcg0S7ouARbVEMyeXu7jaGzxZTY9ahjd2vyYAWJeeFLHRHwY5yMaQU0ZttrD5s_DFATe_N9N5M783svXWdi12nQsR_XlEBTMriF74caU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956443739</pqid></control><display><type>article</type><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiaobin ; Wang, Shengjin</creator><creatorcontrib>Li, Xiaobin ; Wang, Shengjin</creatorcontrib><description>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2749478</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft industry ; Airplanes ; Artificial neural networks ; Convolutional neural network (CNN) ; Detection ; Earth ; Feature extraction ; Frameworks ; Image detection ; Marine vehicles ; Market shares ; Methods ; Neural networks ; Object detection ; Object recognition ; Orientation ; Proposals ; Regions ; Remote sensing ; Ships ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.2037-2041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</citedby><cites>FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</cites><orcidid>0000-0001-9283-2311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8051277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8051277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiaobin</creatorcontrib><creatorcontrib>Wang, Shengjin</creatorcontrib><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</description><subject>Aircraft industry</subject><subject>Airplanes</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>Frameworks</subject><subject>Image detection</subject><subject>Marine vehicles</subject><subject>Market shares</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Orientation</subject><subject>Proposals</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Ships</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcpRqq1AtqAVvIU0nsrVuarKr-Pbu2uLpH4bvH4aPkHOgIwCqr2bTp-cRoyBHTHLNpTogAxBC5VRIOOxnLnKh1esxOUlpTSnjSskBmc-Xa3RNdoNNF1Wos0Wq6rdsHOqvsGn7jd1kj9jGv2i-Q3xPWVVntkNsTJg3IZ9UNWYPtq4xnpIjbzcJz_Y5JIvJ7cv4Lp_Np_fj61numC6aHEE7ZYWwS-aUXpYgPZeUUtBQOll68JI5oM56ZVdQohbcg0S7ouARbVEMyeXu7jaGzxZTY9ahjd2vyYAWJeeFLHRHwY5yMaQU0ZttrD5s_DFATe_N9N5M783svXWdi12nQsR_XlEBTMriF74caU8</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Li, Xiaobin</creator><creator>Wang, Shengjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9283-2311</orcidid></search><sort><creationdate>20171101</creationdate><title>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</title><author>Li, Xiaobin ; Wang, Shengjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e19c8a55ab2c89b617f470001916c76f1f72c10caf8ad16e954f17ead01feea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aircraft industry</topic><topic>Airplanes</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>Frameworks</topic><topic>Image detection</topic><topic>Marine vehicles</topic><topic>Market shares</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Orientation</topic><topic>Proposals</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Ships</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaobin</creatorcontrib><creatorcontrib>Wang, Shengjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiaobin</au><au>Wang, Shengjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>11</issue><spage>2037</spage><epage>2041</epage><pages>2037-2041</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Object detection in remote sensing images has long been studied, but it remains challenging due to the diversity of objects and the complexity of backgrounds. In this letter, we propose an object detection method using convolutional neural networks (CNNs) in a coarse-to-fine manner. In the coarse step, coarse candidate regions that may contain objects are proposed. In the fine step, fine candidate regions are cropped from coarse candidate regions, and are classified as objects or backgrounds. We design a concise and efficient framework that can propose fewer candidate regions and extract more discriminative features. The framework consists of two eight-layer CNNs that are well designed and powerful. To use CNNs to detect inshore ships, image samples are required, each of which should contain only one ship. However, the traditional image cropping method cannot generate such samples. To solve this problem, we present an orientation-free image cropping method that can generate trapezium rather than rectangle samples, making inshore ship detection by CNN feasible. Experimental results on Google Earth images demonstrate that the proposed method outperforms existing state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2749478</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9283-2311</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.2037-2041 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8051277 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft industry Airplanes Artificial neural networks Convolutional neural network (CNN) Detection Earth Feature extraction Frameworks Image detection Marine vehicles Market shares Methods Neural networks Object detection Object recognition Orientation Proposals Regions Remote sensing Ships Training |
title | Object Detection Using Convolutional Neural Networks in a Coarse-to-Fine Manner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Detection%20Using%20Convolutional%20Neural%20Networks%20in%20a%20Coarse-to-Fine%20Manner&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Li,%20Xiaobin&rft.date=2017-11-01&rft.volume=14&rft.issue=11&rft.spage=2037&rft.epage=2041&rft.pages=2037-2041&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2749478&rft_dat=%3Cproquest_RIE%3E1956443739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956443739&rft_id=info:pmid/&rft_ieee_id=8051277&rfr_iscdi=true |