High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems

Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-01, Vol.54 (1), p.321-334
Hauptverfasser: Zhong, Yanni, Roscoe, Nina, Holliday, Derrick, Lim, Tee Chong, Finney, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 321
container_title IEEE transactions on industry applications
container_volume 54
creator Zhong, Yanni
Roscoe, Nina
Holliday, Derrick
Lim, Tee Chong
Finney, Stephen J.
description Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.
doi_str_mv 10.1109/TIA.2017.2754481
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8047266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8047266</ieee_id><sourcerecordid>10_1109_TIA_2017_2754481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</originalsourceid><addsrcrecordid>eNo9kDtPwzAYRS0EEqGwI7H4D7h8fsSPsaSBVkrFQGGNktguRiRBcRjy70nViunqSvfc4SB0T2FJKZjH_Xa1ZEDVkqlUCE0vUEINN8RwqS5RAmA4McaIa3QT4xcAFSkVCco34fBJcu9DE1zXTLjto3cjeaqis3i3y_DaxXDosO8HXHys5x7iOIT6dwx9h9-mOLo23qIrX31Hd3fOBXp_zvfZhhSvL9tsVZCGQzoSJayrLbBacqa5apShlZhDWe-lppXXdt5JbrhnTjXW1LVltQCvwWhGJV8gOP02Qx_j4Hz5M4S2GqaSQnnUUM4ayqOG8qxhRh5OSHDO_c81CMWk5H_B6Vfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</creator><creatorcontrib>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</creatorcontrib><description>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2017.2754481</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Converter design ; current suppression control ; dc–ac ; Harmonic analysis ; Insulated gate bipolar transistors ; Loss measurement ; low-voltage direct current (LVdc) ; modular multilevel converter (MMC) ; MOSFET ; Power harmonic filters ; proportional integral (PI) with orthogonal imaginary axis ; proportional resonant (PR) ; Silicon</subject><ispartof>IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.321-334</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</citedby><cites>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</cites><orcidid>0000-0002-8982-2961 ; 0000-0001-6315-0995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8047266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8047266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Yanni</creatorcontrib><creatorcontrib>Roscoe, Nina</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Lim, Tee Chong</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</description><subject>Capacitors</subject><subject>Converter design</subject><subject>current suppression control</subject><subject>dc–ac</subject><subject>Harmonic analysis</subject><subject>Insulated gate bipolar transistors</subject><subject>Loss measurement</subject><subject>low-voltage direct current (LVdc)</subject><subject>modular multilevel converter (MMC)</subject><subject>MOSFET</subject><subject>Power harmonic filters</subject><subject>proportional integral (PI) with orthogonal imaginary axis</subject><subject>proportional resonant (PR)</subject><subject>Silicon</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAYRS0EEqGwI7H4D7h8fsSPsaSBVkrFQGGNktguRiRBcRjy70nViunqSvfc4SB0T2FJKZjH_Xa1ZEDVkqlUCE0vUEINN8RwqS5RAmA4McaIa3QT4xcAFSkVCco34fBJcu9DE1zXTLjto3cjeaqis3i3y_DaxXDosO8HXHys5x7iOIT6dwx9h9-mOLo23qIrX31Hd3fOBXp_zvfZhhSvL9tsVZCGQzoSJayrLbBacqa5apShlZhDWe-lppXXdt5JbrhnTjXW1LVltQCvwWhGJV8gOP02Qx_j4Hz5M4S2GqaSQnnUUM4ayqOG8qxhRh5OSHDO_c81CMWk5H_B6Vfh</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhong, Yanni</creator><creator>Roscoe, Nina</creator><creator>Holliday, Derrick</creator><creator>Lim, Tee Chong</creator><creator>Finney, Stephen J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8982-2961</orcidid><orcidid>https://orcid.org/0000-0001-6315-0995</orcidid></search><sort><creationdate>201801</creationdate><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><author>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitors</topic><topic>Converter design</topic><topic>current suppression control</topic><topic>dc–ac</topic><topic>Harmonic analysis</topic><topic>Insulated gate bipolar transistors</topic><topic>Loss measurement</topic><topic>low-voltage direct current (LVdc)</topic><topic>modular multilevel converter (MMC)</topic><topic>MOSFET</topic><topic>Power harmonic filters</topic><topic>proportional integral (PI) with orthogonal imaginary axis</topic><topic>proportional resonant (PR)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yanni</creatorcontrib><creatorcontrib>Roscoe, Nina</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Lim, Tee Chong</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Yanni</au><au>Roscoe, Nina</au><au>Holliday, Derrick</au><au>Lim, Tee Chong</au><au>Finney, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><issue>1</issue><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2017.2754481</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8982-2961</orcidid><orcidid>https://orcid.org/0000-0001-6315-0995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.321-334
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_8047266
source IEEE Electronic Library (IEL)
subjects Capacitors
Converter design
current suppression control
dc–ac
Harmonic analysis
Insulated gate bipolar transistors
Loss measurement
low-voltage direct current (LVdc)
modular multilevel converter (MMC)
MOSFET
Power harmonic filters
proportional integral (PI) with orthogonal imaginary axis
proportional resonant (PR)
Silicon
title High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Efficiency%20mosfet-Based%20MMC%20Design%20for%20LVDC%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Zhong,%20Yanni&rft.date=2018-01&rft.volume=54&rft.issue=1&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2017.2754481&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2017_2754481%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8047266&rfr_iscdi=true