High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems
Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modula...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2018-01, Vol.54 (1), p.321-334 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 1 |
container_start_page | 321 |
container_title | IEEE transactions on industry applications |
container_volume | 54 |
creator | Zhong, Yanni Roscoe, Nina Holliday, Derrick Lim, Tee Chong Finney, Stephen J. |
description | Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors. |
doi_str_mv | 10.1109/TIA.2017.2754481 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8047266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8047266</ieee_id><sourcerecordid>10_1109_TIA_2017_2754481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</originalsourceid><addsrcrecordid>eNo9kDtPwzAYRS0EEqGwI7H4D7h8fsSPsaSBVkrFQGGNktguRiRBcRjy70nViunqSvfc4SB0T2FJKZjH_Xa1ZEDVkqlUCE0vUEINN8RwqS5RAmA4McaIa3QT4xcAFSkVCco34fBJcu9DE1zXTLjto3cjeaqis3i3y_DaxXDosO8HXHys5x7iOIT6dwx9h9-mOLo23qIrX31Hd3fOBXp_zvfZhhSvL9tsVZCGQzoSJayrLbBacqa5apShlZhDWe-lppXXdt5JbrhnTjXW1LVltQCvwWhGJV8gOP02Qx_j4Hz5M4S2GqaSQnnUUM4ayqOG8qxhRh5OSHDO_c81CMWk5H_B6Vfh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</creator><creatorcontrib>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</creatorcontrib><description>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2017.2754481</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Converter design ; current suppression control ; dc–ac ; Harmonic analysis ; Insulated gate bipolar transistors ; Loss measurement ; low-voltage direct current (LVdc) ; modular multilevel converter (MMC) ; MOSFET ; Power harmonic filters ; proportional integral (PI) with orthogonal imaginary axis ; proportional resonant (PR) ; Silicon</subject><ispartof>IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.321-334</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</citedby><cites>FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</cites><orcidid>0000-0002-8982-2961 ; 0000-0001-6315-0995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8047266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8047266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Yanni</creatorcontrib><creatorcontrib>Roscoe, Nina</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Lim, Tee Chong</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</description><subject>Capacitors</subject><subject>Converter design</subject><subject>current suppression control</subject><subject>dc–ac</subject><subject>Harmonic analysis</subject><subject>Insulated gate bipolar transistors</subject><subject>Loss measurement</subject><subject>low-voltage direct current (LVdc)</subject><subject>modular multilevel converter (MMC)</subject><subject>MOSFET</subject><subject>Power harmonic filters</subject><subject>proportional integral (PI) with orthogonal imaginary axis</subject><subject>proportional resonant (PR)</subject><subject>Silicon</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAYRS0EEqGwI7H4D7h8fsSPsaSBVkrFQGGNktguRiRBcRjy70nViunqSvfc4SB0T2FJKZjH_Xa1ZEDVkqlUCE0vUEINN8RwqS5RAmA4McaIa3QT4xcAFSkVCco34fBJcu9DE1zXTLjto3cjeaqis3i3y_DaxXDosO8HXHys5x7iOIT6dwx9h9-mOLo23qIrX31Hd3fOBXp_zvfZhhSvL9tsVZCGQzoSJayrLbBacqa5apShlZhDWe-lppXXdt5JbrhnTjXW1LVltQCvwWhGJV8gOP02Qx_j4Hz5M4S2GqaSQnnUUM4ayqOG8qxhRh5OSHDO_c81CMWk5H_B6Vfh</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhong, Yanni</creator><creator>Roscoe, Nina</creator><creator>Holliday, Derrick</creator><creator>Lim, Tee Chong</creator><creator>Finney, Stephen J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8982-2961</orcidid><orcidid>https://orcid.org/0000-0001-6315-0995</orcidid></search><sort><creationdate>201801</creationdate><title>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</title><author>Zhong, Yanni ; Roscoe, Nina ; Holliday, Derrick ; Lim, Tee Chong ; Finney, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-74debd02b632837c791a47c77dff681af8d3056393f2e7cd9bbd2b40f80982163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitors</topic><topic>Converter design</topic><topic>current suppression control</topic><topic>dc–ac</topic><topic>Harmonic analysis</topic><topic>Insulated gate bipolar transistors</topic><topic>Loss measurement</topic><topic>low-voltage direct current (LVdc)</topic><topic>modular multilevel converter (MMC)</topic><topic>MOSFET</topic><topic>Power harmonic filters</topic><topic>proportional integral (PI) with orthogonal imaginary axis</topic><topic>proportional resonant (PR)</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yanni</creatorcontrib><creatorcontrib>Roscoe, Nina</creatorcontrib><creatorcontrib>Holliday, Derrick</creatorcontrib><creatorcontrib>Lim, Tee Chong</creatorcontrib><creatorcontrib>Finney, Stephen J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Yanni</au><au>Roscoe, Nina</au><au>Holliday, Derrick</au><au>Lim, Tee Chong</au><au>Finney, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><issue>1</issue><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Low-voltage dc (LVdc) distribution networks have the potential to release larger capacity without having to upgrade the existing cables. One of the main challenges of LVdc networks is the extra customer-end dc-ac conversion stage. This paper proposes and evaluates a five-level Si mosfet-based modular multilevel converter (MMC) as a promising alternative to the conventional two-level insulated gate bipolar transistor-based converter. This is due to the comparatively higher efficiency, power quality and reliability, and reduced electromagnetic (EM) emissions. A comprehensive analysis of a Si mosfet five-level MMC converter design is performed to investigate the suitability of the topology for LVdc applications. Detailed theoretical analysis of the five-level MMC is presented, with simulated and experimental results to demonstrate circuit performance. To suppress the ac circulating current, especially the dominant second harmonics, this paper presents a double line-frequency proportional integral (PI) with orthogonal imaginary axis control method. Comparison of simulation and experimental results with those for double line-frequency proportional resonant control shows that the proposed PI controller has a better performance. In addition, it is simpler to implement and more immune to sampling/discretization errors.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2017.2754481</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8982-2961</orcidid><orcidid>https://orcid.org/0000-0001-6315-0995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.321-334 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_8047266 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Converter design current suppression control dc–ac Harmonic analysis Insulated gate bipolar transistors Loss measurement low-voltage direct current (LVdc) modular multilevel converter (MMC) MOSFET Power harmonic filters proportional integral (PI) with orthogonal imaginary axis proportional resonant (PR) Silicon |
title | High-Efficiency mosfet-Based MMC Design for LVDC Distribution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Efficiency%20mosfet-Based%20MMC%20Design%20for%20LVDC%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Zhong,%20Yanni&rft.date=2018-01&rft.volume=54&rft.issue=1&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2017.2754481&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2017_2754481%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8047266&rfr_iscdi=true |