Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance

Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2018-06, Vol.33 (6), p.5262-5273
Hauptverfasser: Li, Ke, Evans, Paul Leonard, Johnson, Christopher Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5273
container_issue 6
container_start_page 5262
container_title IEEE transactions on power electronics
container_volume 33
creator Li, Ke
Evans, Paul Leonard
Johnson, Christopher Mark
description Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.
doi_str_mv 10.1109/TPEL.2017.2730260
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8039282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039282</ieee_id><sourcerecordid>2007208279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYj-AOOmievB185MP5YGFE1QiOB6UjpvpASm2BYN_14IxNVLbs69LzmE3DLoMQb6YTZ5GvU4MNnjMgcu4Ix0mC5YBgzkOemAUmWmtM4vyVWMSwBWlMA6ZNFfmGBswuCiSc631LQ1ffM1rlz7RX1Dh2a1cts1fXcpuBrpxP9ioFNcO-vbemuTD3SAP85ipINda_Y5HbfZNJmE9AOji8m0Fq_JRWNWEW9Ot0s-n59m_ZdsNB6-9h9Hmc1zkbJCalPPSy0kChTMMjlv5sKgkQ3DUnDLhVFgSy6EnGtVaM2wYKqRNRgUSuddcn_c3QT_vcWYqqXfhnb_suIAkoPi8kCxI2WDjzFgU22CW5uwqxhUB6HVQWh1EFqdhO47d8eOQ8R_XkGuueL5H08ocjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007208279</pqid></control><display><type>article</type><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</creator><creatorcontrib>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</creatorcontrib><description>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2017.2730260</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Circuits ; Clamps ; Computer simulation ; Current measurement ; Dynamic on-state resistance ; Electrical resistance measurement ; Electronics ; equivalent circuit ; Gallium nitride ; gallium nitride high-electron-mobility transistors (GaN-HEMT) ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; Integrated circuit modeling ; Mathematical models ; Model accuracy ; Power converters ; power semiconductor device characterisation ; power semiconductor device modeling ; Power semiconductor devices ; Predictions ; RC circuits ; Simulators ; Switches ; Switching theory ; Transistors ; Trapping ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2018-06, Vol.33 (6), p.5262-5273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</citedby><cites>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</cites><orcidid>0000-0002-7546-0453 ; 0000-0002-3190-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039282$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Evans, Paul Leonard</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</description><subject>Bias</subject><subject>Circuits</subject><subject>Clamps</subject><subject>Computer simulation</subject><subject>Current measurement</subject><subject>Dynamic on-state resistance</subject><subject>Electrical resistance measurement</subject><subject>Electronics</subject><subject>equivalent circuit</subject><subject>Gallium nitride</subject><subject>gallium nitride high-electron-mobility transistors (GaN-HEMT)</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Power converters</subject><subject>power semiconductor device characterisation</subject><subject>power semiconductor device modeling</subject><subject>Power semiconductor devices</subject><subject>Predictions</subject><subject>RC circuits</subject><subject>Simulators</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Transistors</subject><subject>Trapping</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYj-AOOmievB185MP5YGFE1QiOB6UjpvpASm2BYN_14IxNVLbs69LzmE3DLoMQb6YTZ5GvU4MNnjMgcu4Ix0mC5YBgzkOemAUmWmtM4vyVWMSwBWlMA6ZNFfmGBswuCiSc631LQ1ffM1rlz7RX1Dh2a1cts1fXcpuBrpxP9ioFNcO-vbemuTD3SAP85ipINda_Y5HbfZNJmE9AOji8m0Fq_JRWNWEW9Ot0s-n59m_ZdsNB6-9h9Hmc1zkbJCalPPSy0kChTMMjlv5sKgkQ3DUnDLhVFgSy6EnGtVaM2wYKqRNRgUSuddcn_c3QT_vcWYqqXfhnb_suIAkoPi8kCxI2WDjzFgU22CW5uwqxhUB6HVQWh1EFqdhO47d8eOQ8R_XkGuueL5H08ocjU</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Li, Ke</creator><creator>Evans, Paul Leonard</creator><creator>Johnson, Christopher Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7546-0453</orcidid><orcidid>https://orcid.org/0000-0002-3190-1202</orcidid></search><sort><creationdate>20180601</creationdate><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><author>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Circuits</topic><topic>Clamps</topic><topic>Computer simulation</topic><topic>Current measurement</topic><topic>Dynamic on-state resistance</topic><topic>Electrical resistance measurement</topic><topic>Electronics</topic><topic>equivalent circuit</topic><topic>Gallium nitride</topic><topic>gallium nitride high-electron-mobility transistors (GaN-HEMT)</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Power converters</topic><topic>power semiconductor device characterisation</topic><topic>power semiconductor device modeling</topic><topic>Power semiconductor devices</topic><topic>Predictions</topic><topic>RC circuits</topic><topic>Simulators</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Transistors</topic><topic>Trapping</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Evans, Paul Leonard</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke</au><au>Evans, Paul Leonard</au><au>Johnson, Christopher Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>33</volume><issue>6</issue><spage>5262</spage><epage>5273</epage><pages>5262-5273</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2017.2730260</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7546-0453</orcidid><orcidid>https://orcid.org/0000-0002-3190-1202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2018-06, Vol.33 (6), p.5262-5273
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_8039282
source IEEE Electronic Library (IEL)
subjects Bias
Circuits
Clamps
Computer simulation
Current measurement
Dynamic on-state resistance
Electrical resistance measurement
Electronics
equivalent circuit
Gallium nitride
gallium nitride high-electron-mobility transistors (GaN-HEMT)
Gallium nitrides
HEMTs
High electron mobility transistors
Integrated circuit modeling
Mathematical models
Model accuracy
Power converters
power semiconductor device characterisation
power semiconductor device modeling
Power semiconductor devices
Predictions
RC circuits
Simulators
Switches
Switching theory
Transistors
Trapping
Voltage measurement
title Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20and%20Modeling%20of%20Gallium%20Nitride%20Power%20Semiconductor%20Devices%20Dynamic%20On-State%20Resistance&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Li,%20Ke&rft.date=2018-06-01&rft.volume=33&rft.issue=6&rft.spage=5262&rft.epage=5273&rft.pages=5262-5273&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2017.2730260&rft_dat=%3Cproquest_ieee_%3E2007208279%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007208279&rft_id=info:pmid/&rft_ieee_id=8039282&rfr_iscdi=true