Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance
Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2018-06, Vol.33 (6), p.5262-5273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5273 |
---|---|
container_issue | 6 |
container_start_page | 5262 |
container_title | IEEE transactions on power electronics |
container_volume | 33 |
creator | Li, Ke Evans, Paul Leonard Johnson, Christopher Mark |
description | Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages. |
doi_str_mv | 10.1109/TPEL.2017.2730260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8039282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039282</ieee_id><sourcerecordid>2007208279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</originalsourceid><addsrcrecordid>eNo9kE1PAjEURRujiYj-AOOmievB185MP5YGFE1QiOB6UjpvpASm2BYN_14IxNVLbs69LzmE3DLoMQb6YTZ5GvU4MNnjMgcu4Ix0mC5YBgzkOemAUmWmtM4vyVWMSwBWlMA6ZNFfmGBswuCiSc631LQ1ffM1rlz7RX1Dh2a1cts1fXcpuBrpxP9ioFNcO-vbemuTD3SAP85ipINda_Y5HbfZNJmE9AOji8m0Fq_JRWNWEW9Ot0s-n59m_ZdsNB6-9h9Hmc1zkbJCalPPSy0kChTMMjlv5sKgkQ3DUnDLhVFgSy6EnGtVaM2wYKqRNRgUSuddcn_c3QT_vcWYqqXfhnb_suIAkoPi8kCxI2WDjzFgU22CW5uwqxhUB6HVQWh1EFqdhO47d8eOQ8R_XkGuueL5H08ocjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007208279</pqid></control><display><type>article</type><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</creator><creatorcontrib>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</creatorcontrib><description>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2017.2730260</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Circuits ; Clamps ; Computer simulation ; Current measurement ; Dynamic on-state resistance ; Electrical resistance measurement ; Electronics ; equivalent circuit ; Gallium nitride ; gallium nitride high-electron-mobility transistors (GaN-HEMT) ; Gallium nitrides ; HEMTs ; High electron mobility transistors ; Integrated circuit modeling ; Mathematical models ; Model accuracy ; Power converters ; power semiconductor device characterisation ; power semiconductor device modeling ; Power semiconductor devices ; Predictions ; RC circuits ; Simulators ; Switches ; Switching theory ; Transistors ; Trapping ; Voltage measurement</subject><ispartof>IEEE transactions on power electronics, 2018-06, Vol.33 (6), p.5262-5273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</citedby><cites>FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</cites><orcidid>0000-0002-7546-0453 ; 0000-0002-3190-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039282$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Evans, Paul Leonard</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</description><subject>Bias</subject><subject>Circuits</subject><subject>Clamps</subject><subject>Computer simulation</subject><subject>Current measurement</subject><subject>Dynamic on-state resistance</subject><subject>Electrical resistance measurement</subject><subject>Electronics</subject><subject>equivalent circuit</subject><subject>Gallium nitride</subject><subject>gallium nitride high-electron-mobility transistors (GaN-HEMT)</subject><subject>Gallium nitrides</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Power converters</subject><subject>power semiconductor device characterisation</subject><subject>power semiconductor device modeling</subject><subject>Power semiconductor devices</subject><subject>Predictions</subject><subject>RC circuits</subject><subject>Simulators</subject><subject>Switches</subject><subject>Switching theory</subject><subject>Transistors</subject><subject>Trapping</subject><subject>Voltage measurement</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEURRujiYj-AOOmievB185MP5YGFE1QiOB6UjpvpASm2BYN_14IxNVLbs69LzmE3DLoMQb6YTZ5GvU4MNnjMgcu4Ix0mC5YBgzkOemAUmWmtM4vyVWMSwBWlMA6ZNFfmGBswuCiSc631LQ1ffM1rlz7RX1Dh2a1cts1fXcpuBrpxP9ioFNcO-vbemuTD3SAP85ipINda_Y5HbfZNJmE9AOji8m0Fq_JRWNWEW9Ot0s-n59m_ZdsNB6-9h9Hmc1zkbJCalPPSy0kChTMMjlv5sKgkQ3DUnDLhVFgSy6EnGtVaM2wYKqRNRgUSuddcn_c3QT_vcWYqqXfhnb_suIAkoPi8kCxI2WDjzFgU22CW5uwqxhUB6HVQWh1EFqdhO47d8eOQ8R_XkGuueL5H08ocjU</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Li, Ke</creator><creator>Evans, Paul Leonard</creator><creator>Johnson, Christopher Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7546-0453</orcidid><orcidid>https://orcid.org/0000-0002-3190-1202</orcidid></search><sort><creationdate>20180601</creationdate><title>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</title><author>Li, Ke ; Evans, Paul Leonard ; Johnson, Christopher Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-479adb5967e6e61c17bfb6aea7f1e562c26a80c52667b984991e418f7d0ae6893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Circuits</topic><topic>Clamps</topic><topic>Computer simulation</topic><topic>Current measurement</topic><topic>Dynamic on-state resistance</topic><topic>Electrical resistance measurement</topic><topic>Electronics</topic><topic>equivalent circuit</topic><topic>Gallium nitride</topic><topic>gallium nitride high-electron-mobility transistors (GaN-HEMT)</topic><topic>Gallium nitrides</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Power converters</topic><topic>power semiconductor device characterisation</topic><topic>power semiconductor device modeling</topic><topic>Power semiconductor devices</topic><topic>Predictions</topic><topic>RC circuits</topic><topic>Simulators</topic><topic>Switches</topic><topic>Switching theory</topic><topic>Transistors</topic><topic>Trapping</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Evans, Paul Leonard</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke</au><au>Evans, Paul Leonard</au><au>Johnson, Christopher Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>33</volume><issue>6</issue><spage>5262</spage><epage>5273</epage><pages>5262-5273</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Gallium nitride high-electron-mobility transistors (GaN-HEMTs) suffer from trapping effects that increases device on-state resistance (RDS(on)) above its theoretical value. This increase is a function of the applied dc bias when the device is in its off state, and the time which the device is biased for. Thus, dynamic RDS(on) of different commercial GaN-HEMTs are characterised at different bias voltages in the paper by a proposed new measurement circuit. The time-constants associated with trapping and detrapping effects in the device are extracted using the proposed circuit and it is shown that variations in RDS(on) can be predicted using a series of RC circuit networks. A new methodology for integrating these RDS(on) predictions into existing gallium nitride-high-electron-mobility transistors models in standard SPICE simulators to improve model accuracy is then presented. Finally, device dynamic RDS(on) values of the model is compared and validated with the measurement when it switches in a power converter with different duty cycles and switching voltages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2017.2730260</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7546-0453</orcidid><orcidid>https://orcid.org/0000-0002-3190-1202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2018-06, Vol.33 (6), p.5262-5273 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_8039282 |
source | IEEE Electronic Library (IEL) |
subjects | Bias Circuits Clamps Computer simulation Current measurement Dynamic on-state resistance Electrical resistance measurement Electronics equivalent circuit Gallium nitride gallium nitride high-electron-mobility transistors (GaN-HEMT) Gallium nitrides HEMTs High electron mobility transistors Integrated circuit modeling Mathematical models Model accuracy Power converters power semiconductor device characterisation power semiconductor device modeling Power semiconductor devices Predictions RC circuits Simulators Switches Switching theory Transistors Trapping Voltage measurement |
title | Characterisation and Modeling of Gallium Nitride Power Semiconductor Devices Dynamic On-State Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20and%20Modeling%20of%20Gallium%20Nitride%20Power%20Semiconductor%20Devices%20Dynamic%20On-State%20Resistance&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Li,%20Ke&rft.date=2018-06-01&rft.volume=33&rft.issue=6&rft.spage=5262&rft.epage=5273&rft.pages=5262-5273&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2017.2730260&rft_dat=%3Cproquest_ieee_%3E2007208279%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007208279&rft_id=info:pmid/&rft_ieee_id=8039282&rfr_iscdi=true |