Generative Adversarial Networks:Introduction and Outlook
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2017-01, Vol.4 (4), p.588-598 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 4 |
container_start_page | 588 |
container_title | IEEE/CAA journal of automatica sinica |
container_volume | 4 |
creator | Wang, Kunfeng Gou, Chao Duan, Yanjie Lin, Yilun Zheng, Xinhu Wang, Fei-Yue |
description | Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence. |
doi_str_mv | 10.1109/JAS.2017.7510583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8039016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90687266504849554852484850</cqvip_id><ieee_id>8039016</ieee_id><sourcerecordid>1939941049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGEwlyN_HSxHNxZj-6u94IUcQQOajnZt1OsYBd2BaM_70lEE7zDu-9efkxdoswRAT78Dp6H3JAPdQKQRlxwXpccJtaruXlWWfZNRs0zRIAkCudWdljZkI1RddWe0pGxZ5i42Ll1skbtb8hrprHad3GUOx8W4U6cXWRzHftOoTVDbsq3bqhwen22efz08f4JZ3NJ9PxaJZ6ibpNC84JM4GYkXGKJMisAM3RGUFlUSiH6D3x0nvMtNLdMjDgNXjyX2UhQfTZ_bF3E8N2R02bL8Mu1t3LHK2wViJI27ng6PIxNE2kMt_E6sfFvxwhPyDKO0T5AVF-QtRF7o6RiojOdgPCQje4z8Sp8DvUi21VL84WC5nRHUwF0kirlDSKd8ooEP-2sXAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939941049</pqid></control><display><type>article</type><title>Generative Adversarial Networks:Introduction and Outlook</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</creator><creatorcontrib>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</creatorcontrib><description>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2017.7510583</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Artificial intelligence ; Computational modeling ; Data models ; Gallium nitride ; Games ; Generative adversarial networks ; Generators ; Natural language processing ; Neural networks</subject><ispartof>IEEE/CAA journal of automatica sinica, 2017-01, Vol.4 (4), p.588-598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/61504X/61504X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039016$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Wang, Kunfeng</creatorcontrib><creatorcontrib>Gou, Chao</creatorcontrib><creatorcontrib>Duan, Yanjie</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><creatorcontrib>Zheng, Xinhu</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>Generative Adversarial Networks:Introduction and Outlook</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><description>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</description><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Gallium nitride</subject><subject>Games</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Natural language processing</subject><subject>Neural networks</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1PwkAQxTdGEwlyN_HSxHNxZj-6u94IUcQQOajnZt1OsYBd2BaM_70lEE7zDu-9efkxdoswRAT78Dp6H3JAPdQKQRlxwXpccJtaruXlWWfZNRs0zRIAkCudWdljZkI1RddWe0pGxZ5i42Ll1skbtb8hrprHad3GUOx8W4U6cXWRzHftOoTVDbsq3bqhwen22efz08f4JZ3NJ9PxaJZ6ibpNC84JM4GYkXGKJMisAM3RGUFlUSiH6D3x0nvMtNLdMjDgNXjyX2UhQfTZ_bF3E8N2R02bL8Mu1t3LHK2wViJI27ng6PIxNE2kMt_E6sfFvxwhPyDKO0T5AVF-QtRF7o6RiojOdgPCQje4z8Sp8DvUi21VL84WC5nRHUwF0kirlDSKd8ooEP-2sXAl</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wang, Kunfeng</creator><creator>Gou, Chao</creator><creator>Duan, Yanjie</creator><creator>Lin, Yilun</creator><creator>Zheng, Xinhu</creator><creator>Wang, Fei-Yue</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Generative Adversarial Networks:Introduction and Outlook</title><author>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Gallium nitride</topic><topic>Games</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Natural language processing</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunfeng</creatorcontrib><creatorcontrib>Gou, Chao</creatorcontrib><creatorcontrib>Duan, Yanjie</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><creatorcontrib>Zheng, Xinhu</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunfeng</au><au>Gou, Chao</au><au>Duan, Yanjie</au><au>Lin, Yilun</au><au>Zheng, Xinhu</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Adversarial Networks:Introduction and Outlook</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>4</issue><spage>588</spage><epage>598</epage><pages>588-598</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2017.7510583</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-9266 |
ispartof | IEEE/CAA journal of automatica sinica, 2017-01, Vol.4 (4), p.588-598 |
issn | 2329-9266 2329-9274 |
language | eng |
recordid | cdi_ieee_primary_8039016 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Computational modeling Data models Gallium nitride Games Generative adversarial networks Generators Natural language processing Neural networks |
title | Generative Adversarial Networks:Introduction and Outlook |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Adversarial%20Networks:Introduction%20and%20Outlook&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Wang,%20Kunfeng&rft.date=2017-01-01&rft.volume=4&rft.issue=4&rft.spage=588&rft.epage=598&rft.pages=588-598&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2017.7510583&rft_dat=%3Cproquest_ieee_%3E1939941049%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939941049&rft_id=info:pmid/&rft_cqvip_id=90687266504849554852484850&rft_ieee_id=8039016&rfr_iscdi=true |