Generative Adversarial Networks:Introduction and Outlook

Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2017-01, Vol.4 (4), p.588-598
Hauptverfasser: Wang, Kunfeng, Gou, Chao, Duan, Yanjie, Lin, Yilun, Zheng, Xinhu, Wang, Fei-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 4
container_start_page 588
container_title IEEE/CAA journal of automatica sinica
container_volume 4
creator Wang, Kunfeng
Gou, Chao
Duan, Yanjie
Lin, Yilun
Zheng, Xinhu
Wang, Fei-Yue
description Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
doi_str_mv 10.1109/JAS.2017.7510583
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8039016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>90687266504849554852484850</cqvip_id><ieee_id>8039016</ieee_id><sourcerecordid>1939941049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxTdGEwlyN_HSxHNxZj-6u94IUcQQOajnZt1OsYBd2BaM_70lEE7zDu-9efkxdoswRAT78Dp6H3JAPdQKQRlxwXpccJtaruXlWWfZNRs0zRIAkCudWdljZkI1RddWe0pGxZ5i42Ll1skbtb8hrprHad3GUOx8W4U6cXWRzHftOoTVDbsq3bqhwen22efz08f4JZ3NJ9PxaJZ6ibpNC84JM4GYkXGKJMisAM3RGUFlUSiH6D3x0nvMtNLdMjDgNXjyX2UhQfTZ_bF3E8N2R02bL8Mu1t3LHK2wViJI27ng6PIxNE2kMt_E6sfFvxwhPyDKO0T5AVF-QtRF7o6RiojOdgPCQje4z8Sp8DvUi21VL84WC5nRHUwF0kirlDSKd8ooEP-2sXAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939941049</pqid></control><display><type>article</type><title>Generative Adversarial Networks:Introduction and Outlook</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</creator><creatorcontrib>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</creatorcontrib><description>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</description><identifier>ISSN: 2329-9266</identifier><identifier>EISSN: 2329-9274</identifier><identifier>DOI: 10.1109/JAS.2017.7510583</identifier><identifier>CODEN: IJASJC</identifier><language>eng</language><publisher>Piscataway: Chinese Association of Automation (CAA)</publisher><subject>Artificial intelligence ; Computational modeling ; Data models ; Gallium nitride ; Games ; Generative adversarial networks ; Generators ; Natural language processing ; Neural networks</subject><ispartof>IEEE/CAA journal of automatica sinica, 2017-01, Vol.4 (4), p.588-598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/61504X/61504X.jpg</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039016$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Wang, Kunfeng</creatorcontrib><creatorcontrib>Gou, Chao</creatorcontrib><creatorcontrib>Duan, Yanjie</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><creatorcontrib>Zheng, Xinhu</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><title>Generative Adversarial Networks:Introduction and Outlook</title><title>IEEE/CAA journal of automatica sinica</title><addtitle>JAS</addtitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><description>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</description><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Gallium nitride</subject><subject>Games</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Natural language processing</subject><subject>Neural networks</subject><issn>2329-9266</issn><issn>2329-9274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1PwkAQxTdGEwlyN_HSxHNxZj-6u94IUcQQOajnZt1OsYBd2BaM_70lEE7zDu-9efkxdoswRAT78Dp6H3JAPdQKQRlxwXpccJtaruXlWWfZNRs0zRIAkCudWdljZkI1RddWe0pGxZ5i42Ll1skbtb8hrprHad3GUOx8W4U6cXWRzHftOoTVDbsq3bqhwen22efz08f4JZ3NJ9PxaJZ6ibpNC84JM4GYkXGKJMisAM3RGUFlUSiH6D3x0nvMtNLdMjDgNXjyX2UhQfTZ_bF3E8N2R02bL8Mu1t3LHK2wViJI27ng6PIxNE2kMt_E6sfFvxwhPyDKO0T5AVF-QtRF7o6RiojOdgPCQje4z8Sp8DvUi21VL84WC5nRHUwF0kirlDSKd8ooEP-2sXAl</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wang, Kunfeng</creator><creator>Gou, Chao</creator><creator>Duan, Yanjie</creator><creator>Lin, Yilun</creator><creator>Zheng, Xinhu</creator><creator>Wang, Fei-Yue</creator><general>Chinese Association of Automation (CAA)</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Generative Adversarial Networks:Introduction and Outlook</title><author>Wang, Kunfeng ; Gou, Chao ; Duan, Yanjie ; Lin, Yilun ; Zheng, Xinhu ; Wang, Fei-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-d22e163116e8a5e4046d0721a83efdd5a11cce2fcc16757001080c70cecbfd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Gallium nitride</topic><topic>Games</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Natural language processing</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunfeng</creatorcontrib><creatorcontrib>Gou, Chao</creatorcontrib><creatorcontrib>Duan, Yanjie</creatorcontrib><creatorcontrib>Lin, Yilun</creatorcontrib><creatorcontrib>Zheng, Xinhu</creatorcontrib><creatorcontrib>Wang, Fei-Yue</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/CAA journal of automatica sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunfeng</au><au>Gou, Chao</au><au>Duan, Yanjie</au><au>Lin, Yilun</au><au>Zheng, Xinhu</au><au>Wang, Fei-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Adversarial Networks:Introduction and Outlook</atitle><jtitle>IEEE/CAA journal of automatica sinica</jtitle><stitle>JAS</stitle><addtitle>IEEE/CAA Journal of Automatica Sinica</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>4</issue><spage>588</spage><epage>598</epage><pages>588-598</pages><issn>2329-9266</issn><eissn>2329-9274</eissn><coden>IJASJC</coden><abstract>Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.</abstract><cop>Piscataway</cop><pub>Chinese Association of Automation (CAA)</pub><doi>10.1109/JAS.2017.7510583</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-9266
ispartof IEEE/CAA journal of automatica sinica, 2017-01, Vol.4 (4), p.588-598
issn 2329-9266
2329-9274
language eng
recordid cdi_ieee_primary_8039016
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Computational modeling
Data models
Gallium nitride
Games
Generative adversarial networks
Generators
Natural language processing
Neural networks
title Generative Adversarial Networks:Introduction and Outlook
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Adversarial%20Networks:Introduction%20and%20Outlook&rft.jtitle=IEEE/CAA%20journal%20of%20automatica%20sinica&rft.au=Wang,%20Kunfeng&rft.date=2017-01-01&rft.volume=4&rft.issue=4&rft.spage=588&rft.epage=598&rft.pages=588-598&rft.issn=2329-9266&rft.eissn=2329-9274&rft.coden=IJASJC&rft_id=info:doi/10.1109/JAS.2017.7510583&rft_dat=%3Cproquest_ieee_%3E1939941049%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939941049&rft_id=info:pmid/&rft_cqvip_id=90687266504849554852484850&rft_ieee_id=8039016&rfr_iscdi=true