Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree
Image segmentation is the foundation of object-based image analysis, and many researchers have sought optimal segmentation results. The initial image oversegmentation and the optimal segmentation scale are two vital factors in high spatial resolution remote sensing image segmentation. With respect t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (1), p.228-238 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | 1 |
container_start_page | 228 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Wang, Mi Dong, Zhipeng Cheng, Yufeng Li, Deren |
description | Image segmentation is the foundation of object-based image analysis, and many researchers have sought optimal segmentation results. The initial image oversegmentation and the optimal segmentation scale are two vital factors in high spatial resolution remote sensing image segmentation. With respect to these two issues, a novel image segmentation method combining superpixels with a minimum spanning tree is proposed in this paper. First, the image is oversegmented using a simple linear iterative clustering algorithm to obtain superpixels. Then, the superpixels are clustered by regionalization with a dynamically constrained agglomerative clustering and partitioning (REDCAP) algorithm using the initial number of segments, and the local variance (LV) and the rate of LV change (ROC-LV) indicator diagrams corresponding to the number of segments are obtained. The suitable number of image segments is determined according to the LV and ROC-LV indicator diagrams corresponding to the number of segments. Finally, the superpixels are reclustered using the REDCAP algorithm based on the suitable number of image segments to obtain the image segmentation result. Through two sets of experiments, the proposed method is compared with two other segmentation algorithms. The experimental results show that the proposed method outperforms the others and obtains good image segmentation results. |
doi_str_mv | 10.1109/TGRS.2017.2745507 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8038855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038855</ieee_id><sourcerecordid>2174511090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3621069308d3047091357a4151bc30042b360bfb04256eb5152d39b95f842c3a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5tNskcp2hYqhabiccmmkzQlX2Y3YP-9iS2eZph53hl4CHlkMGMM1MtusY1nHFg446EvJYRXZMKkjDwIfP-aTICpwOOR4rfkztojAPMlCyfEbVpXVElJY8wrrF3iiqamTUaXRX7wtmibsv8bbbFqHA5YbYs6p6sqyZGaE503lSnqcRT3LXZt8YOlpV-FO1B3QPox7Kq-onGb1H_UrkO8JzdZUlp8uNQp-Xx_282X3nqzWM1f117KlXCeCDiDQAmI9gL8EBQTMkx8JplJBYDPjQjAZGboZIBGMsn3Qhkls8jnqUjElDyf77Zd892jdfrY9F09vNScDZpGczBQ7EylXWNth5luu0FJd9IM9IjoUa4e5eqL3CHzdM4UiPjPRyCiSErxC5b0dPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174511090</pqid></control><display><type>article</type><title>Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Mi ; Dong, Zhipeng ; Cheng, Yufeng ; Li, Deren</creator><creatorcontrib>Wang, Mi ; Dong, Zhipeng ; Cheng, Yufeng ; Li, Deren</creatorcontrib><description>Image segmentation is the foundation of object-based image analysis, and many researchers have sought optimal segmentation results. The initial image oversegmentation and the optimal segmentation scale are two vital factors in high spatial resolution remote sensing image segmentation. With respect to these two issues, a novel image segmentation method combining superpixels with a minimum spanning tree is proposed in this paper. First, the image is oversegmented using a simple linear iterative clustering algorithm to obtain superpixels. Then, the superpixels are clustered by regionalization with a dynamically constrained agglomerative clustering and partitioning (REDCAP) algorithm using the initial number of segments, and the local variance (LV) and the rate of LV change (ROC-LV) indicator diagrams corresponding to the number of segments are obtained. The suitable number of image segments is determined according to the LV and ROC-LV indicator diagrams corresponding to the number of segments. Finally, the superpixels are reclustered using the REDCAP algorithm based on the suitable number of image segments to obtain the image segmentation result. Through two sets of experiments, the proposed method is compared with two other segmentation algorithms. The experimental results show that the proposed method outperforms the others and obtains good image segmentation results.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2745507</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Corporate acquisitions ; Graph theory ; Heuristic algorithms ; high-resolution remote sensing image ; Image analysis ; Image color analysis ; Image processing ; Image resolution ; Image segmentation ; Indicator diagrams ; Markov analysis ; Merging ; Methods ; objects merging ; optimal image segmentation scale ; Remote sensing ; remote sensing image segmentation ; Resolution ; Spatial discrimination ; Spatial resolution ; superpixels ; Variance analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.228-238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3621069308d3047091357a4151bc30042b360bfb04256eb5152d39b95f842c3a3</citedby><cites>FETCH-LOGICAL-c293t-3621069308d3047091357a4151bc30042b360bfb04256eb5152d39b95f842c3a3</cites><orcidid>0000-0003-3665-1350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8038855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Dong, Zhipeng</creatorcontrib><creatorcontrib>Cheng, Yufeng</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><title>Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Image segmentation is the foundation of object-based image analysis, and many researchers have sought optimal segmentation results. The initial image oversegmentation and the optimal segmentation scale are two vital factors in high spatial resolution remote sensing image segmentation. With respect to these two issues, a novel image segmentation method combining superpixels with a minimum spanning tree is proposed in this paper. First, the image is oversegmented using a simple linear iterative clustering algorithm to obtain superpixels. Then, the superpixels are clustered by regionalization with a dynamically constrained agglomerative clustering and partitioning (REDCAP) algorithm using the initial number of segments, and the local variance (LV) and the rate of LV change (ROC-LV) indicator diagrams corresponding to the number of segments are obtained. The suitable number of image segments is determined according to the LV and ROC-LV indicator diagrams corresponding to the number of segments. Finally, the superpixels are reclustered using the REDCAP algorithm based on the suitable number of image segments to obtain the image segmentation result. Through two sets of experiments, the proposed method is compared with two other segmentation algorithms. The experimental results show that the proposed method outperforms the others and obtains good image segmentation results.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Corporate acquisitions</subject><subject>Graph theory</subject><subject>Heuristic algorithms</subject><subject>high-resolution remote sensing image</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Indicator diagrams</subject><subject>Markov analysis</subject><subject>Merging</subject><subject>Methods</subject><subject>objects merging</subject><subject>optimal image segmentation scale</subject><subject>Remote sensing</subject><subject>remote sensing image segmentation</subject><subject>Resolution</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>superpixels</subject><subject>Variance analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5tNskcp2hYqhabiccmmkzQlX2Y3YP-9iS2eZph53hl4CHlkMGMM1MtusY1nHFg446EvJYRXZMKkjDwIfP-aTICpwOOR4rfkztojAPMlCyfEbVpXVElJY8wrrF3iiqamTUaXRX7wtmibsv8bbbFqHA5YbYs6p6sqyZGaE503lSnqcRT3LXZt8YOlpV-FO1B3QPox7Kq-onGb1H_UrkO8JzdZUlp8uNQp-Xx_282X3nqzWM1f117KlXCeCDiDQAmI9gL8EBQTMkx8JplJBYDPjQjAZGboZIBGMsn3Qhkls8jnqUjElDyf77Zd892jdfrY9F09vNScDZpGczBQ7EylXWNth5luu0FJd9IM9IjoUa4e5eqL3CHzdM4UiPjPRyCiSErxC5b0dPw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wang, Mi</creator><creator>Dong, Zhipeng</creator><creator>Cheng, Yufeng</creator><creator>Li, Deren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3665-1350</orcidid></search><sort><creationdate>201801</creationdate><title>Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree</title><author>Wang, Mi ; Dong, Zhipeng ; Cheng, Yufeng ; Li, Deren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3621069308d3047091357a4151bc30042b360bfb04256eb5152d39b95f842c3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Corporate acquisitions</topic><topic>Graph theory</topic><topic>Heuristic algorithms</topic><topic>high-resolution remote sensing image</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Indicator diagrams</topic><topic>Markov analysis</topic><topic>Merging</topic><topic>Methods</topic><topic>objects merging</topic><topic>optimal image segmentation scale</topic><topic>Remote sensing</topic><topic>remote sensing image segmentation</topic><topic>Resolution</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>superpixels</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mi</creatorcontrib><creatorcontrib>Dong, Zhipeng</creatorcontrib><creatorcontrib>Cheng, Yufeng</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Mi</au><au>Dong, Zhipeng</au><au>Cheng, Yufeng</au><au>Li, Deren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>228</spage><epage>238</epage><pages>228-238</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Image segmentation is the foundation of object-based image analysis, and many researchers have sought optimal segmentation results. The initial image oversegmentation and the optimal segmentation scale are two vital factors in high spatial resolution remote sensing image segmentation. With respect to these two issues, a novel image segmentation method combining superpixels with a minimum spanning tree is proposed in this paper. First, the image is oversegmented using a simple linear iterative clustering algorithm to obtain superpixels. Then, the superpixels are clustered by regionalization with a dynamically constrained agglomerative clustering and partitioning (REDCAP) algorithm using the initial number of segments, and the local variance (LV) and the rate of LV change (ROC-LV) indicator diagrams corresponding to the number of segments are obtained. The suitable number of image segments is determined according to the LV and ROC-LV indicator diagrams corresponding to the number of segments. Finally, the superpixels are reclustered using the REDCAP algorithm based on the suitable number of image segments to obtain the image segmentation result. Through two sets of experiments, the proposed method is compared with two other segmentation algorithms. The experimental results show that the proposed method outperforms the others and obtains good image segmentation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2745507</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3665-1350</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.228-238 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_8038855 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering Clustering algorithms Corporate acquisitions Graph theory Heuristic algorithms high-resolution remote sensing image Image analysis Image color analysis Image processing Image resolution Image segmentation Indicator diagrams Markov analysis Merging Methods objects merging optimal image segmentation scale Remote sensing remote sensing image segmentation Resolution Spatial discrimination Spatial resolution superpixels Variance analysis |
title | Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Segmentation%20of%20High-Resolution%20Remote%20Sensing%20Image%20by%20Combining%20Superpixels%20With%20the%20Minimum%20Spanning%20Tree&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Mi&rft.date=2018-01&rft.volume=56&rft.issue=1&rft.spage=228&rft.epage=238&rft.pages=228-238&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2745507&rft_dat=%3Cproquest_RIE%3E2174511090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174511090&rft_id=info:pmid/&rft_ieee_id=8038855&rfr_iscdi=true |