Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem

The problem of forced oscillations in a cavity filled with a dynamic plasma is solved in the time domain in compliance with the principle of causality. Interaction of the plasma and the cavity field is driven by the motion equation where the field is present in the Lorentz force standing at its righ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2017-11, Vol.65 (11), p.5918-5931
1. Verfasser: Erden, Fatih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5931
container_issue 11
container_start_page 5918
container_title IEEE transactions on antennas and propagation
container_volume 65
creator Erden, Fatih
description The problem of forced oscillations in a cavity filled with a dynamic plasma is solved in the time domain in compliance with the principle of causality. Interaction of the plasma and the cavity field is driven by the motion equation where the field is present in the Lorentz force standing at its right-hand side. The solution has a form of the modal expansions. Every term herein is a product of two multipliers. One is the vector element of the modal basis dependent on coordinates only. The basis is obtained as an eigenvector set of a self-adjoint operator specially selected from Maxwell's equations. The operator is specified as a merger of the differential procedure ∇× and the boundary conditions over perfectly conducting cavity surface. The basis elements are derived with their physical dimensions, i.e., volt per meter and ampere per meter. The other factor is a scalar dimensionfree time-dependent modal amplitude. A system of evolutionary equations (i.e., with time derivative) for the modal amplitudes is derived and solved explicitly under the initial conditions. The problem is solved in the Hilbert space of real-valued functions of coordinates and time.
doi_str_mv 10.1109/TAP.2017.2752240
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8038010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038010</ieee_id><sourcerecordid>10_1109_TAP_2017_2752240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-e086b8f6ffb1cf2e7d1b2950527b8af3d887b4dcd8183a362215b7320b30a7b13</originalsourceid><addsrcrecordid>eNo9kEFLw0AUhBdRsFbvgpf9A4nvvU2ym2OotQpFC0bwFnaTXYwk3ZDEQP-9KS2ehoGZYfgYu0cIESF9zLNdSIAyJBkTRXDBFhjHKiAivGQLAFRBSsnXNbsZhp_ZRiqKFixbT775HWu_1_2BZ13Xe11-89HzD99Mlmv-5ifb8LxubfDkW13v-UpP9Xjgu96bxra37MrpZrB3Z12yz-d1vnoJtu-b11W2DUpKxBhYUIlRLnHOYOnIygoNpTHEJI3STlRKSRNVZaVQCS2S-XZspCAwArQ0KJYMTrtl74eht67o-rqdXxcIxRFBMSMojgiKM4K58nCq1Nba_7gCoQBB_AHbVVcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Erden, Fatih</creator><creatorcontrib>Erden, Fatih</creatorcontrib><description>The problem of forced oscillations in a cavity filled with a dynamic plasma is solved in the time domain in compliance with the principle of causality. Interaction of the plasma and the cavity field is driven by the motion equation where the field is present in the Lorentz force standing at its right-hand side. The solution has a form of the modal expansions. Every term herein is a product of two multipliers. One is the vector element of the modal basis dependent on coordinates only. The basis is obtained as an eigenvector set of a self-adjoint operator specially selected from Maxwell's equations. The operator is specified as a merger of the differential procedure ∇× and the boundary conditions over perfectly conducting cavity surface. The basis elements are derived with their physical dimensions, i.e., volt per meter and ampere per meter. The other factor is a scalar dimensionfree time-dependent modal amplitude. A system of evolutionary equations (i.e., with time derivative) for the modal amplitudes is derived and solved explicitly under the initial conditions. The problem is solved in the Hilbert space of real-valued functions of coordinates and time.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2017.2752240</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cavity ; Cavity resonators ; evolutionary approach ; Mathematical model ; Maxwell equations ; Maxwell’s equations ; Meters ; Oscillators ; plasma ; Plasmas ; Time-domain analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2017-11, Vol.65 (11), p.5918-5931</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-e086b8f6ffb1cf2e7d1b2950527b8af3d887b4dcd8183a362215b7320b30a7b13</citedby><cites>FETCH-LOGICAL-c263t-e086b8f6ffb1cf2e7d1b2950527b8af3d887b4dcd8183a362215b7320b30a7b13</cites><orcidid>0000-0003-0885-9031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8038010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erden, Fatih</creatorcontrib><title>Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The problem of forced oscillations in a cavity filled with a dynamic plasma is solved in the time domain in compliance with the principle of causality. Interaction of the plasma and the cavity field is driven by the motion equation where the field is present in the Lorentz force standing at its right-hand side. The solution has a form of the modal expansions. Every term herein is a product of two multipliers. One is the vector element of the modal basis dependent on coordinates only. The basis is obtained as an eigenvector set of a self-adjoint operator specially selected from Maxwell's equations. The operator is specified as a merger of the differential procedure ∇× and the boundary conditions over perfectly conducting cavity surface. The basis elements are derived with their physical dimensions, i.e., volt per meter and ampere per meter. The other factor is a scalar dimensionfree time-dependent modal amplitude. A system of evolutionary equations (i.e., with time derivative) for the modal amplitudes is derived and solved explicitly under the initial conditions. The problem is solved in the Hilbert space of real-valued functions of coordinates and time.</description><subject>Cavity</subject><subject>Cavity resonators</subject><subject>evolutionary approach</subject><subject>Mathematical model</subject><subject>Maxwell equations</subject><subject>Maxwell’s equations</subject><subject>Meters</subject><subject>Oscillators</subject><subject>plasma</subject><subject>Plasmas</subject><subject>Time-domain analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AUhBdRsFbvgpf9A4nvvU2ym2OotQpFC0bwFnaTXYwk3ZDEQP-9KS2ehoGZYfgYu0cIESF9zLNdSIAyJBkTRXDBFhjHKiAivGQLAFRBSsnXNbsZhp_ZRiqKFixbT775HWu_1_2BZ13Xe11-89HzD99Mlmv-5ifb8LxubfDkW13v-UpP9Xjgu96bxra37MrpZrB3Z12yz-d1vnoJtu-b11W2DUpKxBhYUIlRLnHOYOnIygoNpTHEJI3STlRKSRNVZaVQCS2S-XZspCAwArQ0KJYMTrtl74eht67o-rqdXxcIxRFBMSMojgiKM4K58nCq1Nba_7gCoQBB_AHbVVcU</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Erden, Fatih</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0885-9031</orcidid></search><sort><creationdate>201711</creationdate><title>Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem</title><author>Erden, Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-e086b8f6ffb1cf2e7d1b2950527b8af3d887b4dcd8183a362215b7320b30a7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cavity</topic><topic>Cavity resonators</topic><topic>evolutionary approach</topic><topic>Mathematical model</topic><topic>Maxwell equations</topic><topic>Maxwell’s equations</topic><topic>Meters</topic><topic>Oscillators</topic><topic>plasma</topic><topic>Plasmas</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erden, Fatih</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erden, Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2017-11</date><risdate>2017</risdate><volume>65</volume><issue>11</issue><spage>5918</spage><epage>5931</epage><pages>5918-5931</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The problem of forced oscillations in a cavity filled with a dynamic plasma is solved in the time domain in compliance with the principle of causality. Interaction of the plasma and the cavity field is driven by the motion equation where the field is present in the Lorentz force standing at its right-hand side. The solution has a form of the modal expansions. Every term herein is a product of two multipliers. One is the vector element of the modal basis dependent on coordinates only. The basis is obtained as an eigenvector set of a self-adjoint operator specially selected from Maxwell's equations. The operator is specified as a merger of the differential procedure ∇× and the boundary conditions over perfectly conducting cavity surface. The basis elements are derived with their physical dimensions, i.e., volt per meter and ampere per meter. The other factor is a scalar dimensionfree time-dependent modal amplitude. A system of evolutionary equations (i.e., with time derivative) for the modal amplitudes is derived and solved explicitly under the initial conditions. The problem is solved in the Hilbert space of real-valued functions of coordinates and time.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2017.2752240</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0885-9031</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2017-11, Vol.65 (11), p.5918-5931
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_8038010
source IEEE Electronic Library (IEL)
subjects Cavity
Cavity resonators
evolutionary approach
Mathematical model
Maxwell equations
Maxwell’s equations
Meters
Oscillators
plasma
Plasmas
Time-domain analysis
title Evolutionary Approach to Solve a Novel Time-Domain Cavity Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Approach%20to%20Solve%20a%20Novel%20Time-Domain%20Cavity%20Problem&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Erden,%20Fatih&rft.date=2017-11&rft.volume=65&rft.issue=11&rft.spage=5918&rft.epage=5931&rft.pages=5918-5931&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2017.2752240&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_2017_2752240%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8038010&rfr_iscdi=true