Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds

Harm claim thresholds (HCTs) are a promising approach for regulators to specify interference limits in a technology-neutral fashion, and a useful parameter spectrum access systems can use to manage the aggregate interference caused by transmitters they control. However, existing literature provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking 2017-09, Vol.3 (3), p.520-533
Hauptverfasser: Riihijärvi, Janne, Mähönen, Petri, de Vries, J. Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 3
container_start_page 520
container_title IEEE transactions on cognitive communications and networking
container_volume 3
creator Riihijärvi, Janne
Mähönen, Petri
de Vries, J. Pierre
description Harm claim thresholds (HCTs) are a promising approach for regulators to specify interference limits in a technology-neutral fashion, and a useful parameter spectrum access systems can use to manage the aggregate interference caused by transmitters they control. However, existing literature provides very little guidance how HCTs should be set and enforced. In this paper, we propose a detailed regulatory framework for gathering and processing of measurement data for enforcing and setting HCTs. We introduce the central concepts of stratification and weighting of measurement data, and show their importance in ensuring representativeness of measurements and enabling robust estimation of statistical confidence on results. For deriving HCT thresholds from measurements, we propose additional representativeness criteria that a regulator should apply to avoid underestimation of field strength levels related to existing wireless services. We demonstrate application of our proposed framework using an extensive drive test data set, and show that the chosen HCT percentile is critical in determining how much data needs to be gathered for enforcement. We also show how spatial prediction techniques can be used to deal with data sets that have been collected non-uniformly over the region of interest, emphasizing the need for modern bias-corrected techniques.
doi_str_mv 10.1109/TCCN.2017.2746578
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8022976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8022976</ieee_id><sourcerecordid>10_1109_TCCN_2017_2746578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-54c299d446517e039825ecc42a02130c701f385c1f929934af769600667e218f3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZ-gPiSP9B5k7RJ8yjddIOhD5svvpSQ3rhKm44kPvjvbdkQn-7hcs7h8BFyz2DJGOjHQ1W9LjkwteQql4Uqr8iMC8EzpQS7_qdvySLGLwBgkktZ5jPysU8mtTG11nR06x0G9Bbp4On-hDaF756uTDLUDYGuMLafnhrf0LUfHxZ79IkOjm5M6GnVmbanh2PAeBy6Jt6RG2e6iIvLnZP35_Wh2mS7t5dt9bTLLJdFyorccq2bfBzOFILQJS_Q2pwb4EyAVcCcKAvLnB59IjdOSS0BpFTIWenEnLBzrw1DjAFdfQptb8JPzaCe-NQTn3riU1_4jJmHc6ZFxD9_CZxrJcUvF95f0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds</title><source>IEEE Electronic Library (IEL)</source><creator>Riihijärvi, Janne ; Mähönen, Petri ; de Vries, J. Pierre</creator><creatorcontrib>Riihijärvi, Janne ; Mähönen, Petri ; de Vries, J. Pierre</creatorcontrib><description>Harm claim thresholds (HCTs) are a promising approach for regulators to specify interference limits in a technology-neutral fashion, and a useful parameter spectrum access systems can use to manage the aggregate interference caused by transmitters they control. However, existing literature provides very little guidance how HCTs should be set and enforced. In this paper, we propose a detailed regulatory framework for gathering and processing of measurement data for enforcing and setting HCTs. We introduce the central concepts of stratification and weighting of measurement data, and show their importance in ensuring representativeness of measurements and enabling robust estimation of statistical confidence on results. For deriving HCT thresholds from measurements, we propose additional representativeness criteria that a regulator should apply to avoid underestimation of field strength levels related to existing wireless services. We demonstrate application of our proposed framework using an extensive drive test data set, and show that the chosen HCT percentile is critical in determining how much data needs to be gathered for enforcement. We also show how spatial prediction techniques can be used to deal with data sets that have been collected non-uniformly over the region of interest, emphasizing the need for modern bias-corrected techniques.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2017.2746578</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Estimation ; Harm claim thresholds ; Interference ; radio regulation ; Receivers ; Regulators ; spatial statistics ; spectrum measurements ; statistical data processing ; Temperature measurement ; Weight measurement</subject><ispartof>IEEE transactions on cognitive communications and networking, 2017-09, Vol.3 (3), p.520-533</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-54c299d446517e039825ecc42a02130c701f385c1f929934af769600667e218f3</citedby><cites>FETCH-LOGICAL-c265t-54c299d446517e039825ecc42a02130c701f385c1f929934af769600667e218f3</cites><orcidid>0000-0002-5989-3611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8022976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8022976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riihijärvi, Janne</creatorcontrib><creatorcontrib>Mähönen, Petri</creatorcontrib><creatorcontrib>de Vries, J. Pierre</creatorcontrib><title>Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>Harm claim thresholds (HCTs) are a promising approach for regulators to specify interference limits in a technology-neutral fashion, and a useful parameter spectrum access systems can use to manage the aggregate interference caused by transmitters they control. However, existing literature provides very little guidance how HCTs should be set and enforced. In this paper, we propose a detailed regulatory framework for gathering and processing of measurement data for enforcing and setting HCTs. We introduce the central concepts of stratification and weighting of measurement data, and show their importance in ensuring representativeness of measurements and enabling robust estimation of statistical confidence on results. For deriving HCT thresholds from measurements, we propose additional representativeness criteria that a regulator should apply to avoid underestimation of field strength levels related to existing wireless services. We demonstrate application of our proposed framework using an extensive drive test data set, and show that the chosen HCT percentile is critical in determining how much data needs to be gathered for enforcement. We also show how spatial prediction techniques can be used to deal with data sets that have been collected non-uniformly over the region of interest, emphasizing the need for modern bias-corrected techniques.</description><subject>Aggregates</subject><subject>Estimation</subject><subject>Harm claim thresholds</subject><subject>Interference</subject><subject>radio regulation</subject><subject>Receivers</subject><subject>Regulators</subject><subject>spatial statistics</subject><subject>spectrum measurements</subject><subject>statistical data processing</subject><subject>Temperature measurement</subject><subject>Weight measurement</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOOZ-gPiSP9B5k7RJ8yjddIOhD5svvpSQ3rhKm44kPvjvbdkQn-7hcs7h8BFyz2DJGOjHQ1W9LjkwteQql4Uqr8iMC8EzpQS7_qdvySLGLwBgkktZ5jPysU8mtTG11nR06x0G9Bbp4On-hDaF756uTDLUDYGuMLafnhrf0LUfHxZ79IkOjm5M6GnVmbanh2PAeBy6Jt6RG2e6iIvLnZP35_Wh2mS7t5dt9bTLLJdFyorccq2bfBzOFILQJS_Q2pwb4EyAVcCcKAvLnB59IjdOSS0BpFTIWenEnLBzrw1DjAFdfQptb8JPzaCe-NQTn3riU1_4jJmHc6ZFxD9_CZxrJcUvF95f0A</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Riihijärvi, Janne</creator><creator>Mähönen, Petri</creator><creator>de Vries, J. Pierre</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5989-3611</orcidid></search><sort><creationdate>201709</creationdate><title>Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds</title><author>Riihijärvi, Janne ; Mähönen, Petri ; de Vries, J. Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-54c299d446517e039825ecc42a02130c701f385c1f929934af769600667e218f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aggregates</topic><topic>Estimation</topic><topic>Harm claim thresholds</topic><topic>Interference</topic><topic>radio regulation</topic><topic>Receivers</topic><topic>Regulators</topic><topic>spatial statistics</topic><topic>spectrum measurements</topic><topic>statistical data processing</topic><topic>Temperature measurement</topic><topic>Weight measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Riihijärvi, Janne</creatorcontrib><creatorcontrib>Mähönen, Petri</creatorcontrib><creatorcontrib>de Vries, J. Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riihijärvi, Janne</au><au>Mähönen, Petri</au><au>de Vries, J. Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2017-09</date><risdate>2017</risdate><volume>3</volume><issue>3</issue><spage>520</spage><epage>533</epage><pages>520-533</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>Harm claim thresholds (HCTs) are a promising approach for regulators to specify interference limits in a technology-neutral fashion, and a useful parameter spectrum access systems can use to manage the aggregate interference caused by transmitters they control. However, existing literature provides very little guidance how HCTs should be set and enforced. In this paper, we propose a detailed regulatory framework for gathering and processing of measurement data for enforcing and setting HCTs. We introduce the central concepts of stratification and weighting of measurement data, and show their importance in ensuring representativeness of measurements and enabling robust estimation of statistical confidence on results. For deriving HCT thresholds from measurements, we propose additional representativeness criteria that a regulator should apply to avoid underestimation of field strength levels related to existing wireless services. We demonstrate application of our proposed framework using an extensive drive test data set, and show that the chosen HCT percentile is critical in determining how much data needs to be gathered for enforcement. We also show how spatial prediction techniques can be used to deal with data sets that have been collected non-uniformly over the region of interest, emphasizing the need for modern bias-corrected techniques.</abstract><pub>IEEE</pub><doi>10.1109/TCCN.2017.2746578</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5989-3611</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7731
ispartof IEEE transactions on cognitive communications and networking, 2017-09, Vol.3 (3), p.520-533
issn 2332-7731
2332-7731
language eng
recordid cdi_ieee_primary_8022976
source IEEE Electronic Library (IEL)
subjects Aggregates
Estimation
Harm claim thresholds
Interference
radio regulation
Receivers
Regulators
spatial statistics
spectrum measurements
statistical data processing
Temperature measurement
Weight measurement
title Statistical Inference on Spectrum Data for Design and Enforcement of Harm Claim Thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Inference%20on%20Spectrum%20Data%20for%20Design%20and%20Enforcement%20of%20Harm%20Claim%20Thresholds&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=Riihija%CC%88rvi,%20Janne&rft.date=2017-09&rft.volume=3&rft.issue=3&rft.spage=520&rft.epage=533&rft.pages=520-533&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2017.2746578&rft_dat=%3Ccrossref_RIE%3E10_1109_TCCN_2017_2746578%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8022976&rfr_iscdi=true