Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval

This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-12, Vol.26 (12), p.5706-5717
Hauptverfasser: Liu, Peizhong, Guo, Jing-Ming, Wu, Chi-Yi, Cai, Danlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5717
container_issue 12
container_start_page 5706
container_title IEEE transactions on image processing
container_volume 26
creator Liu, Peizhong
Guo, Jing-Ming
Wu, Chi-Yi
Cai, Danlin
description This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
doi_str_mv 10.1109/TIP.2017.2736343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8019823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019823</ieee_id><sourcerecordid>1935403622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P5Pdo7ZWCwVFKngLm2S2RJpN3E0E_71bWnuaYeaZ4eVB6JqSKaVE36-Xb1NGaDZlGU-54CdoTLWgCSGCncaeyCzJqNAjdBHCFyFUSJqeoxFTKk2FpmP0uRhC3TrcWjwH6PAKjHe122DjKjxrm85DCFDheduY2uEFmH6II2xbH9euB9cnj2ZHLBuzAfwOva_hx2wv0Zk12wBXhzpBH4un9ewlWb0-L2cPq6TkSvaJtAUUVupKWSEUCFuB5FazmNQW0jCrM8ttVkkQhOpMMF6mBXCtbKoqXVk-QXf7v51vvwcIfd7UoYTt1jhoh5BTzaUgPGUsomSPlr4NwYPNO183xv_mlOQ7n3n0me985gef8eT28H0oGqiOB_8CI3CzB2oAOK5VzKoY53_pTXle</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935403622</pqid></control><display><type>article</type><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</creator><creatorcontrib>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</creatorcontrib><description>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2736343</identifier><identifier>PMID: 28866491</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>block truncation coding ; Computational complexity ; Content-based image retrieval ; convolutional-neural network ; deep learning ; Feature extraction ; halftoning ; Histograms ; Image coding ; Image color analysis ; Image retrieval ; Machine learning</subject><ispartof>IEEE transactions on image processing, 2017-12, Vol.26 (12), p.5706-5717</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</citedby><cites>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</cites><orcidid>0000-0003-3083-5503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019823$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019823$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Peizhong</creatorcontrib><creatorcontrib>Guo, Jing-Ming</creatorcontrib><creatorcontrib>Wu, Chi-Yi</creatorcontrib><creatorcontrib>Cai, Danlin</creatorcontrib><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</description><subject>block truncation coding</subject><subject>Computational complexity</subject><subject>Content-based image retrieval</subject><subject>convolutional-neural network</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>halftoning</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>Machine learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P5Pdo7ZWCwVFKngLm2S2RJpN3E0E_71bWnuaYeaZ4eVB6JqSKaVE36-Xb1NGaDZlGU-54CdoTLWgCSGCncaeyCzJqNAjdBHCFyFUSJqeoxFTKk2FpmP0uRhC3TrcWjwH6PAKjHe122DjKjxrm85DCFDheduY2uEFmH6II2xbH9euB9cnj2ZHLBuzAfwOva_hx2wv0Zk12wBXhzpBH4un9ewlWb0-L2cPq6TkSvaJtAUUVupKWSEUCFuB5FazmNQW0jCrM8ttVkkQhOpMMF6mBXCtbKoqXVk-QXf7v51vvwcIfd7UoYTt1jhoh5BTzaUgPGUsomSPlr4NwYPNO183xv_mlOQ7n3n0me985gef8eT28H0oGqiOB_8CI3CzB2oAOK5VzKoY53_pTXle</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Liu, Peizhong</creator><creator>Guo, Jing-Ming</creator><creator>Wu, Chi-Yi</creator><creator>Cai, Danlin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3083-5503</orcidid></search><sort><creationdate>201712</creationdate><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><author>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>block truncation coding</topic><topic>Computational complexity</topic><topic>Content-based image retrieval</topic><topic>convolutional-neural network</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>halftoning</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peizhong</creatorcontrib><creatorcontrib>Guo, Jing-Ming</creatorcontrib><creatorcontrib>Wu, Chi-Yi</creatorcontrib><creatorcontrib>Cai, Danlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Peizhong</au><au>Guo, Jing-Ming</au><au>Wu, Chi-Yi</au><au>Cai, Danlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-12</date><risdate>2017</risdate><volume>26</volume><issue>12</issue><spage>5706</spage><epage>5717</epage><pages>5706-5717</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866491</pmid><doi>10.1109/TIP.2017.2736343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3083-5503</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-12, Vol.26 (12), p.5706-5717
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_8019823
source IEEE Electronic Library (IEL)
subjects block truncation coding
Computational complexity
Content-based image retrieval
convolutional-neural network
deep learning
Feature extraction
halftoning
Histograms
Image coding
Image color analysis
Image retrieval
Machine learning
title Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Deep%20Learning%20and%20Compressed%20Domain%20Features%20for%20Content-Based%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Peizhong&rft.date=2017-12&rft.volume=26&rft.issue=12&rft.spage=5706&rft.epage=5717&rft.pages=5706-5717&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2736343&rft_dat=%3Cproquest_RIE%3E1935403622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935403622&rft_id=info:pmid/28866491&rft_ieee_id=8019823&rfr_iscdi=true