Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval
This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-12, Vol.26 (12), p.5706-5717 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5717 |
---|---|
container_issue | 12 |
container_start_page | 5706 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Liu, Peizhong Guo, Jing-Ming Wu, Chi-Yi Cai, Danlin |
description | This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications. |
doi_str_mv | 10.1109/TIP.2017.2736343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8019823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019823</ieee_id><sourcerecordid>1935403622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P5Pdo7ZWCwVFKngLm2S2RJpN3E0E_71bWnuaYeaZ4eVB6JqSKaVE36-Xb1NGaDZlGU-54CdoTLWgCSGCncaeyCzJqNAjdBHCFyFUSJqeoxFTKk2FpmP0uRhC3TrcWjwH6PAKjHe122DjKjxrm85DCFDheduY2uEFmH6II2xbH9euB9cnj2ZHLBuzAfwOva_hx2wv0Zk12wBXhzpBH4un9ewlWb0-L2cPq6TkSvaJtAUUVupKWSEUCFuB5FazmNQW0jCrM8ttVkkQhOpMMF6mBXCtbKoqXVk-QXf7v51vvwcIfd7UoYTt1jhoh5BTzaUgPGUsomSPlr4NwYPNO183xv_mlOQ7n3n0me985gef8eT28H0oGqiOB_8CI3CzB2oAOK5VzKoY53_pTXle</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935403622</pqid></control><display><type>article</type><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</creator><creatorcontrib>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</creatorcontrib><description>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2736343</identifier><identifier>PMID: 28866491</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>block truncation coding ; Computational complexity ; Content-based image retrieval ; convolutional-neural network ; deep learning ; Feature extraction ; halftoning ; Histograms ; Image coding ; Image color analysis ; Image retrieval ; Machine learning</subject><ispartof>IEEE transactions on image processing, 2017-12, Vol.26 (12), p.5706-5717</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</citedby><cites>FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</cites><orcidid>0000-0003-3083-5503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019823$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019823$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Peizhong</creatorcontrib><creatorcontrib>Guo, Jing-Ming</creatorcontrib><creatorcontrib>Wu, Chi-Yi</creatorcontrib><creatorcontrib>Cai, Danlin</creatorcontrib><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</description><subject>block truncation coding</subject><subject>Computational complexity</subject><subject>Content-based image retrieval</subject><subject>convolutional-neural network</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>halftoning</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>Machine learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRbK3eBUH26CV1P5Pdo7ZWCwVFKngLm2S2RJpN3E0E_71bWnuaYeaZ4eVB6JqSKaVE36-Xb1NGaDZlGU-54CdoTLWgCSGCncaeyCzJqNAjdBHCFyFUSJqeoxFTKk2FpmP0uRhC3TrcWjwH6PAKjHe122DjKjxrm85DCFDheduY2uEFmH6II2xbH9euB9cnj2ZHLBuzAfwOva_hx2wv0Zk12wBXhzpBH4un9ewlWb0-L2cPq6TkSvaJtAUUVupKWSEUCFuB5FazmNQW0jCrM8ttVkkQhOpMMF6mBXCtbKoqXVk-QXf7v51vvwcIfd7UoYTt1jhoh5BTzaUgPGUsomSPlr4NwYPNO183xv_mlOQ7n3n0me985gef8eT28H0oGqiOB_8CI3CzB2oAOK5VzKoY53_pTXle</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Liu, Peizhong</creator><creator>Guo, Jing-Ming</creator><creator>Wu, Chi-Yi</creator><creator>Cai, Danlin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3083-5503</orcidid></search><sort><creationdate>201712</creationdate><title>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</title><author>Liu, Peizhong ; Guo, Jing-Ming ; Wu, Chi-Yi ; Cai, Danlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5fbebf59d8f448e4fde53f92145fb5a2f97f3f7d5e40197423c6be398f68d9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>block truncation coding</topic><topic>Computational complexity</topic><topic>Content-based image retrieval</topic><topic>convolutional-neural network</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>halftoning</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peizhong</creatorcontrib><creatorcontrib>Guo, Jing-Ming</creatorcontrib><creatorcontrib>Wu, Chi-Yi</creatorcontrib><creatorcontrib>Cai, Danlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Peizhong</au><au>Guo, Jing-Ming</au><au>Wu, Chi-Yi</au><au>Cai, Danlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-12</date><risdate>2017</risdate><volume>26</volume><issue>12</issue><spage>5706</spage><epage>5717</epage><pages>5706-5717</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper presents an effective image retrieval method by combining high-level features from convolutional neural network (CNN) model and low-level features from dot-diffused block truncation coding (DDBTC). The low-level features, e.g., texture and color, are constructed by vector quantization -indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate and average recall rate (ARR), are employed to examine various data sets. As documented in the experimental results, the proposed schemes can achieve superior performance compared with the state-of-the-art methods with either low-or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866491</pmid><doi>10.1109/TIP.2017.2736343</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3083-5503</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-12, Vol.26 (12), p.5706-5717 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_8019823 |
source | IEEE Electronic Library (IEL) |
subjects | block truncation coding Computational complexity Content-based image retrieval convolutional-neural network deep learning Feature extraction halftoning Histograms Image coding Image color analysis Image retrieval Machine learning |
title | Fusion of Deep Learning and Compressed Domain Features for Content-Based Image Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Deep%20Learning%20and%20Compressed%20Domain%20Features%20for%20Content-Based%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Peizhong&rft.date=2017-12&rft.volume=26&rft.issue=12&rft.spage=5706&rft.epage=5717&rft.pages=5706-5717&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2736343&rft_dat=%3Cproquest_RIE%3E1935403622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1935403622&rft_id=info:pmid/28866491&rft_ieee_id=8019823&rfr_iscdi=true |