A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization

In this paper, a new outlier-robust Student's t based Gaussian approximate filter is proposed to address the heavy-tailed process and measurement noises induced by the outlier measurements of velocity and range in cooperative localization of autonomous underwater vehicles (AUVs). The state vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2017-10, Vol.22 (5), p.2380-2386
Hauptverfasser: Yulong Huang, Yonggang Zhang, Bo Xu, Zhemin Wu, Chambers, Jonathon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2386
container_issue 5
container_start_page 2380
container_title IEEE/ASME transactions on mechatronics
container_volume 22
creator Yulong Huang
Yonggang Zhang
Bo Xu
Zhemin Wu
Chambers, Jonathon
description In this paper, a new outlier-robust Student's t based Gaussian approximate filter is proposed to address the heavy-tailed process and measurement noises induced by the outlier measurements of velocity and range in cooperative localization of autonomous underwater vehicles (AUVs). The state vector, scale matrices, and degrees of freedom (DOF) parameters are jointly estimated based on the variational Bayesian approach by using the constructed Student's t based hierarchical Gaussian state-space model. The performances of the proposed filter and existing filters are tested in the cooperative localization of an AUV through a lake trial. Experimental results illustrate that the proposed filter has better localization accuracy and robustness than existing state-of-the-art outlier-robust filters.
doi_str_mv 10.1109/TMECH.2017.2744651
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8016598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8016598</ieee_id><sourcerecordid>1951149629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d5be1a0facd7183507b517c5e5611741cab09d1ba07ed733b12b12d67f7771393</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhosouK6-gN4EvPCqa6ZJmvZyLXsQVhd0Be9C2k6hS21qknp6ervuIgzMDPz_HL4guAQ6AaDp7eZhli0nEQU5iSTnsYCjYAQph5ACfz0eapqwkHMmToMz57aUUg4URoGakkf8JOveNzXa8MnkvfPk2fcltv7GEU_utMOSLHTvXK1bMu06a77qN-2RzOvGoyWVsSQzpkOrff2BZGUK3dQ_Q2Pa8-Ck0o3Di0MeBy_z2SZbhqv14j6brsKCsdSHpcgRNK10UUpImKAyFyALgSIGkBwKndO0hFxTiaVkLIdoiDKWlZQSWMrGwfV-7nDde4_Oq63pbTusVJAKAJ7G0U4V7VWFNc5ZrFRnh1fstwKqdiDVH0i1A6kOIAfT1d5UI-K_IaEQizRhv-6ibvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951149629</pqid></control><display><type>article</type><title>A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Yulong Huang ; Yonggang Zhang ; Bo Xu ; Zhemin Wu ; Chambers, Jonathon</creator><creatorcontrib>Yulong Huang ; Yonggang Zhang ; Bo Xu ; Zhemin Wu ; Chambers, Jonathon</creatorcontrib><description>In this paper, a new outlier-robust Student's t based Gaussian approximate filter is proposed to address the heavy-tailed process and measurement noises induced by the outlier measurements of velocity and range in cooperative localization of autonomous underwater vehicles (AUVs). The state vector, scale matrices, and degrees of freedom (DOF) parameters are jointly estimated based on the variational Bayesian approach by using the constructed Student's t based hierarchical Gaussian state-space model. The performances of the proposed filter and existing filters are tested in the cooperative localization of an AUV through a lake trial. Experimental results illustrate that the proposed filter has better localization accuracy and robustness than existing state-of-the-art outlier-robust filters.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2017.2744651</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[Acoustic measurements ; Autonomous underwater vehicles ; Autonomous underwater vehicles (AUVs) ; Bayes methods ; Bayesian analysis ; cooperative localization ; Covariance matrices ; Degrees of freedom ; Gaussian process ; heavy-tailed noise ; Localization ; Matrix algebra ; Matrix methods ; Noise measurement ; nonlinear filtering ; outlier ; Parameter estimation ; Robustness ; State space models ; State-space methods ; Student's <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> </inline-formula> </named-content> distribution ; variational Bayesian ; Velocity measurement]]></subject><ispartof>IEEE/ASME transactions on mechatronics, 2017-10, Vol.22 (5), p.2380-2386</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d5be1a0facd7183507b517c5e5611741cab09d1ba07ed733b12b12d67f7771393</citedby><cites>FETCH-LOGICAL-c339t-d5be1a0facd7183507b517c5e5611741cab09d1ba07ed733b12b12d67f7771393</cites><orcidid>0000-0003-4548-1111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8016598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8016598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yulong Huang</creatorcontrib><creatorcontrib>Yonggang Zhang</creatorcontrib><creatorcontrib>Bo Xu</creatorcontrib><creatorcontrib>Zhemin Wu</creatorcontrib><creatorcontrib>Chambers, Jonathon</creatorcontrib><title>A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>In this paper, a new outlier-robust Student's t based Gaussian approximate filter is proposed to address the heavy-tailed process and measurement noises induced by the outlier measurements of velocity and range in cooperative localization of autonomous underwater vehicles (AUVs). The state vector, scale matrices, and degrees of freedom (DOF) parameters are jointly estimated based on the variational Bayesian approach by using the constructed Student's t based hierarchical Gaussian state-space model. The performances of the proposed filter and existing filters are tested in the cooperative localization of an AUV through a lake trial. Experimental results illustrate that the proposed filter has better localization accuracy and robustness than existing state-of-the-art outlier-robust filters.</description><subject>Acoustic measurements</subject><subject>Autonomous underwater vehicles</subject><subject>Autonomous underwater vehicles (AUVs)</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>cooperative localization</subject><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Gaussian process</subject><subject>heavy-tailed noise</subject><subject>Localization</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Noise measurement</subject><subject>nonlinear filtering</subject><subject>outlier</subject><subject>Parameter estimation</subject><subject>Robustness</subject><subject>State space models</subject><subject>State-space methods</subject><subject><![CDATA[Student's <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> </inline-formula> </named-content> distribution]]></subject><subject>variational Bayesian</subject><subject>Velocity measurement</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKxDAQhosouK6-gN4EvPCqa6ZJmvZyLXsQVhd0Be9C2k6hS21qknp6ervuIgzMDPz_HL4guAQ6AaDp7eZhli0nEQU5iSTnsYCjYAQph5ACfz0eapqwkHMmToMz57aUUg4URoGakkf8JOveNzXa8MnkvfPk2fcltv7GEU_utMOSLHTvXK1bMu06a77qN-2RzOvGoyWVsSQzpkOrff2BZGUK3dQ_Q2Pa8-Ck0o3Di0MeBy_z2SZbhqv14j6brsKCsdSHpcgRNK10UUpImKAyFyALgSIGkBwKndO0hFxTiaVkLIdoiDKWlZQSWMrGwfV-7nDde4_Oq63pbTusVJAKAJ7G0U4V7VWFNc5ZrFRnh1fstwKqdiDVH0i1A6kOIAfT1d5UI-K_IaEQizRhv-6ibvs</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Yulong Huang</creator><creator>Yonggang Zhang</creator><creator>Bo Xu</creator><creator>Zhemin Wu</creator><creator>Chambers, Jonathon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4548-1111</orcidid></search><sort><creationdate>201710</creationdate><title>A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization</title><author>Yulong Huang ; Yonggang Zhang ; Bo Xu ; Zhemin Wu ; Chambers, Jonathon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d5be1a0facd7183507b517c5e5611741cab09d1ba07ed733b12b12d67f7771393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustic measurements</topic><topic>Autonomous underwater vehicles</topic><topic>Autonomous underwater vehicles (AUVs)</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>cooperative localization</topic><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Gaussian process</topic><topic>heavy-tailed noise</topic><topic>Localization</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Noise measurement</topic><topic>nonlinear filtering</topic><topic>outlier</topic><topic>Parameter estimation</topic><topic>Robustness</topic><topic>State space models</topic><topic>State-space methods</topic><topic><![CDATA[Student's <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> </inline-formula> </named-content> distribution]]></topic><topic>variational Bayesian</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yulong Huang</creatorcontrib><creatorcontrib>Yonggang Zhang</creatorcontrib><creatorcontrib>Bo Xu</creatorcontrib><creatorcontrib>Zhemin Wu</creatorcontrib><creatorcontrib>Chambers, Jonathon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yulong Huang</au><au>Yonggang Zhang</au><au>Bo Xu</au><au>Zhemin Wu</au><au>Chambers, Jonathon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2017-10</date><risdate>2017</risdate><volume>22</volume><issue>5</issue><spage>2380</spage><epage>2386</epage><pages>2380-2386</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>In this paper, a new outlier-robust Student's t based Gaussian approximate filter is proposed to address the heavy-tailed process and measurement noises induced by the outlier measurements of velocity and range in cooperative localization of autonomous underwater vehicles (AUVs). The state vector, scale matrices, and degrees of freedom (DOF) parameters are jointly estimated based on the variational Bayesian approach by using the constructed Student's t based hierarchical Gaussian state-space model. The performances of the proposed filter and existing filters are tested in the cooperative localization of an AUV through a lake trial. Experimental results illustrate that the proposed filter has better localization accuracy and robustness than existing state-of-the-art outlier-robust filters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2017.2744651</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4548-1111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2017-10, Vol.22 (5), p.2380-2386
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_8016598
source IEEE Electronic Library (IEL)
subjects Acoustic measurements
Autonomous underwater vehicles
Autonomous underwater vehicles (AUVs)
Bayes methods
Bayesian analysis
cooperative localization
Covariance matrices
Degrees of freedom
Gaussian process
heavy-tailed noise
Localization
Matrix algebra
Matrix methods
Noise measurement
nonlinear filtering
outlier
Parameter estimation
Robustness
State space models
State-space methods
Student's <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> t</tex-math> </inline-formula> </named-content> distribution
variational Bayesian
Velocity measurement
title A New Outlier-Robust Student's t Based Gaussian Approximate Filter for Cooperative Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Outlier-Robust%20Student's%20t%20Based%20Gaussian%20Approximate%20Filter%20for%20Cooperative%20Localization&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Yulong%20Huang&rft.date=2017-10&rft.volume=22&rft.issue=5&rft.spage=2380&rft.epage=2386&rft.pages=2380-2386&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2017.2744651&rft_dat=%3Cproquest_RIE%3E1951149629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951149629&rft_id=info:pmid/&rft_ieee_id=8016598&rfr_iscdi=true