Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems
Modular robotic systems that integrate distally with commercially available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and feedback sensing. Wit...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2018-01, Vol.3 (1), p.171-178 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | IEEE robotics and automation letters |
container_volume | 3 |
creator | Gafford, Joshua Aihara, Hiroyuki Thompson, Christopher Wood, Robert Walsh, Conor |
description | Modular robotic systems that integrate distally with commercially available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and feedback sensing. With the desire to integrate both sensing and actuation distally for closed-loop position control in fully deployable, endoscope-based robotic modules, commercial sensor and actuator options that acquiesce to the strict form-factor requirements are sparse or nonexistent. Herein, we describe a proprioceptive angle sensor for potential closed-loop position control applications in distal robotic modules. Fabricated monolithically using printed-circuit MEMS, the sensor employs a kinematic linkage and the principle of light intensity modulation to sense the angle of articulation with a high degree of fidelity. Onboard temperature and environmental irradiance measurements, coupled with linear regression techniques, provide robust angle measurements that are insensitive to environmental disturbances. The sensor is capable of measuring ±45 degrees of articulation with an RMS error of 0.98 degrees. An ex vivo demonstration shows that the sensor can give real-time proprioceptive feedback when coupled with an actuator module, opening up the possibility of fully distal closed-loop control. |
doi_str_mv | 10.1109/LRA.2017.2737042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8003473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8003473</ieee_id><sourcerecordid>2299370652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f7bee3e5dee87d7c7758c1150b8221f7ac07ba42de036c3b8cfcbc85f3508183</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlkj7W2KlSUtjcPIZudha3tpiZbof_elBbxMMwc3jfDPEJuGQwZg-JhvhgPOTA15EooGPEL0uNCqUyoPL_8N1-TQYxrAGAykYXskc-nJnZ2Qz-C34XGO9x1zQ_SJbbRB1qnevNd41s6Q6xK675o09JpW_no_A6zRxuxSki139hAF75MsKPLQ-xwG2_IVW03EQfn3ier2XQ1ecnm78-vk_E8c7xgXVarElGgrBC1qpRTSmrHmIRSc85qZR2o0o54hSByJ0rtalc6LWshQTMt-uT-tHYX_PceY2fWfh_adNFwXhRJSC55ouBEueBjDFib9O_WhoNhYI4STZJojhLNWWKK3J0iDSL-4RpAjJQQv67LbdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370652</pqid></control><display><type>article</type><title>Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems</title><source>IEEE Xplore</source><creator>Gafford, Joshua ; Aihara, Hiroyuki ; Thompson, Christopher ; Wood, Robert ; Walsh, Conor</creator><creatorcontrib>Gafford, Joshua ; Aihara, Hiroyuki ; Thompson, Christopher ; Wood, Robert ; Walsh, Conor</creatorcontrib><description>Modular robotic systems that integrate distally with commercially available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and feedback sensing. With the desire to integrate both sensing and actuation distally for closed-loop position control in fully deployable, endoscope-based robotic modules, commercial sensor and actuator options that acquiesce to the strict form-factor requirements are sparse or nonexistent. Herein, we describe a proprioceptive angle sensor for potential closed-loop position control applications in distal robotic modules. Fabricated monolithically using printed-circuit MEMS, the sensor employs a kinematic linkage and the principle of light intensity modulation to sense the angle of articulation with a high degree of fidelity. Onboard temperature and environmental irradiance measurements, coupled with linear regression techniques, provide robust angle measurements that are insensitive to environmental disturbances. The sensor is capable of measuring ±45 degrees of articulation with an RMS error of 0.98 degrees. An ex vivo demonstration shows that the sensor can give real-time proprioceptive feedback when coupled with an actuator module, opening up the possibility of fully distal closed-loop control.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2017.2737042</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Actuators ; Circuits ; Couplings ; Endoscopes ; Feedback ; Flexible robots ; Irradiance ; Kinematics ; Luminous intensity ; mechanism design ; medical robots and systems ; Microelectromechanical systems ; Modular systems ; Modules ; Position sensing ; Robot sensing systems ; Robotics ; Robustness (mathematics) ; Sensors</subject><ispartof>IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.171-178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f7bee3e5dee87d7c7758c1150b8221f7ac07ba42de036c3b8cfcbc85f3508183</citedby><cites>FETCH-LOGICAL-c291t-f7bee3e5dee87d7c7758c1150b8221f7ac07ba42de036c3b8cfcbc85f3508183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8003473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8003473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gafford, Joshua</creatorcontrib><creatorcontrib>Aihara, Hiroyuki</creatorcontrib><creatorcontrib>Thompson, Christopher</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Walsh, Conor</creatorcontrib><title>Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Modular robotic systems that integrate distally with commercially available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and feedback sensing. With the desire to integrate both sensing and actuation distally for closed-loop position control in fully deployable, endoscope-based robotic modules, commercial sensor and actuator options that acquiesce to the strict form-factor requirements are sparse or nonexistent. Herein, we describe a proprioceptive angle sensor for potential closed-loop position control applications in distal robotic modules. Fabricated monolithically using printed-circuit MEMS, the sensor employs a kinematic linkage and the principle of light intensity modulation to sense the angle of articulation with a high degree of fidelity. Onboard temperature and environmental irradiance measurements, coupled with linear regression techniques, provide robust angle measurements that are insensitive to environmental disturbances. The sensor is capable of measuring ±45 degrees of articulation with an RMS error of 0.98 degrees. An ex vivo demonstration shows that the sensor can give real-time proprioceptive feedback when coupled with an actuator module, opening up the possibility of fully distal closed-loop control.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Circuits</subject><subject>Couplings</subject><subject>Endoscopes</subject><subject>Feedback</subject><subject>Flexible robots</subject><subject>Irradiance</subject><subject>Kinematics</subject><subject>Luminous intensity</subject><subject>mechanism design</subject><subject>medical robots and systems</subject><subject>Microelectromechanical systems</subject><subject>Modular systems</subject><subject>Modules</subject><subject>Position sensing</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpNlkj7W2KlSUtjcPIZudha3tpiZbof_elBbxMMwc3jfDPEJuGQwZg-JhvhgPOTA15EooGPEL0uNCqUyoPL_8N1-TQYxrAGAykYXskc-nJnZ2Qz-C34XGO9x1zQ_SJbbRB1qnevNd41s6Q6xK675o09JpW_no_A6zRxuxSki139hAF75MsKPLQ-xwG2_IVW03EQfn3ier2XQ1ecnm78-vk_E8c7xgXVarElGgrBC1qpRTSmrHmIRSc85qZR2o0o54hSByJ0rtalc6LWshQTMt-uT-tHYX_PceY2fWfh_adNFwXhRJSC55ouBEueBjDFib9O_WhoNhYI4STZJojhLNWWKK3J0iDSL-4RpAjJQQv67LbdQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Gafford, Joshua</creator><creator>Aihara, Hiroyuki</creator><creator>Thompson, Christopher</creator><creator>Wood, Robert</creator><creator>Walsh, Conor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems</title><author>Gafford, Joshua ; Aihara, Hiroyuki ; Thompson, Christopher ; Wood, Robert ; Walsh, Conor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f7bee3e5dee87d7c7758c1150b8221f7ac07ba42de036c3b8cfcbc85f3508183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Circuits</topic><topic>Couplings</topic><topic>Endoscopes</topic><topic>Feedback</topic><topic>Flexible robots</topic><topic>Irradiance</topic><topic>Kinematics</topic><topic>Luminous intensity</topic><topic>mechanism design</topic><topic>medical robots and systems</topic><topic>Microelectromechanical systems</topic><topic>Modular systems</topic><topic>Modules</topic><topic>Position sensing</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gafford, Joshua</creatorcontrib><creatorcontrib>Aihara, Hiroyuki</creatorcontrib><creatorcontrib>Thompson, Christopher</creatorcontrib><creatorcontrib>Wood, Robert</creatorcontrib><creatorcontrib>Walsh, Conor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gafford, Joshua</au><au>Aihara, Hiroyuki</au><au>Thompson, Christopher</au><au>Wood, Robert</au><au>Walsh, Conor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-01</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>171</spage><epage>178</epage><pages>171-178</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Modular robotic systems that integrate distally with commercially available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and feedback sensing. With the desire to integrate both sensing and actuation distally for closed-loop position control in fully deployable, endoscope-based robotic modules, commercial sensor and actuator options that acquiesce to the strict form-factor requirements are sparse or nonexistent. Herein, we describe a proprioceptive angle sensor for potential closed-loop position control applications in distal robotic modules. Fabricated monolithically using printed-circuit MEMS, the sensor employs a kinematic linkage and the principle of light intensity modulation to sense the angle of articulation with a high degree of fidelity. Onboard temperature and environmental irradiance measurements, coupled with linear regression techniques, provide robust angle measurements that are insensitive to environmental disturbances. The sensor is capable of measuring ±45 degrees of articulation with an RMS error of 0.98 degrees. An ex vivo demonstration shows that the sensor can give real-time proprioceptive feedback when coupled with an actuator module, opening up the possibility of fully distal closed-loop control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2017.2737042</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.171-178 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_8003473 |
source | IEEE Xplore |
subjects | Actuation Actuators Circuits Couplings Endoscopes Feedback Flexible robots Irradiance Kinematics Luminous intensity mechanism design medical robots and systems Microelectromechanical systems Modular systems Modules Position sensing Robot sensing systems Robotics Robustness (mathematics) Sensors |
title | Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distal%20Proprioceptive%20Sensor%20for%20Motion%20Feedback%20in%20Endoscope-Based%20Modular%20Robotic%20Systems&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Gafford,%20Joshua&rft.date=2018-01&rft.volume=3&rft.issue=1&rft.spage=171&rft.epage=178&rft.pages=171-178&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2017.2737042&rft_dat=%3Cproquest_RIE%3E2299370652%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299370652&rft_id=info:pmid/&rft_ieee_id=8003473&rfr_iscdi=true |