60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration

This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2017-10, Vol.52 (10), p.2576-2588
Hauptverfasser: Chan, Chi-Hang, Zhu, Yan, Li, Cheng, Zhang, Wai-Hong, Ho, Iok-Meng, Wei, Lai, U, Seng-Pan, Martins, Rui Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2588
container_issue 10
container_start_page 2576
container_title IEEE journal of solid-state circuits
container_volume 52
creator Chan, Chi-Hang
Zhu, Yan
Li, Cheng
Zhang, Wai-Hong
Ho, Iok-Meng
Wei, Lai
U, Seng-Pan
Martins, Rui Paulo
description This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.
doi_str_mv 10.1109/JSSC.2017.2728784
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8002584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8002584</ieee_id><sourcerecordid>1943304386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdZpx3bi2MsSyksFpKY8dlacTGiqkBQ7XfD3JGrFanR1HyMdQi4ZTBgDPX1K02TCgcUTHnMVq_CIjFgUqYDF4vOYjACYCjQHOCVn3m96GYaKjci7hKC4oenL7ZIygOA5nXqazpZ0dpt4-lF1a7paO_Trti7oEvO2Kauvnctsjb0s0WGTI5071zqaZHVlXdZVbXNOTsqs9nhxuGPydjdfJQ_B4vX-MZktgpxr0QWyzPJQWhlF0qINeanQRlaKgjOMRBhrrePBlIUCXmooRSY0oMxljBGiFWNyvd_duvZnh74zm3bnmv6lYToUAkKhZJ9i-1TuWu8dlmbrqu_M_RoGZsBnBnxmwGcO-PrO1b5TIeJ_XgHwqHf_AGSlaHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943304386</pqid></control><display><type>article</type><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</creator><creatorcontrib>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</creatorcontrib><description>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2728784</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital conversion ; Analog to digital converters ; Calibration ; Capacitors ; Circuit design ; CMOS ; Decoupling ; Error correction ; Noise levels ; Prototypes ; Reference buffer ; reference error calibration ; Registers ; Subtraction ; successive approximation register (SAR) analog-to-digital converter (ADC) ; Switches ; Switching ; System-on-chip ; threshold reconfigurable comparator ; Topology ; Transient analysis</subject><ispartof>IEEE journal of solid-state circuits, 2017-10, Vol.52 (10), p.2576-2588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</citedby><cites>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</cites><orcidid>0000-0002-8298-3244 ; 0000-0002-7635-1101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8002584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8002584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, Chi-Hang</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhang, Wai-Hong</creatorcontrib><creatorcontrib>Ho, Iok-Meng</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>U, Seng-Pan</creatorcontrib><creatorcontrib>Martins, Rui Paulo</creatorcontrib><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</description><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Calibration</subject><subject>Capacitors</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Decoupling</subject><subject>Error correction</subject><subject>Noise levels</subject><subject>Prototypes</subject><subject>Reference buffer</subject><subject>reference error calibration</subject><subject>Registers</subject><subject>Subtraction</subject><subject>successive approximation register (SAR) analog-to-digital converter (ADC)</subject><subject>Switches</subject><subject>Switching</subject><subject>System-on-chip</subject><subject>threshold reconfigurable comparator</subject><subject>Topology</subject><subject>Transient analysis</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdZpx3bi2MsSyksFpKY8dlacTGiqkBQ7XfD3JGrFanR1HyMdQi4ZTBgDPX1K02TCgcUTHnMVq_CIjFgUqYDF4vOYjACYCjQHOCVn3m96GYaKjci7hKC4oenL7ZIygOA5nXqazpZ0dpt4-lF1a7paO_Trti7oEvO2Kauvnctsjb0s0WGTI5071zqaZHVlXdZVbXNOTsqs9nhxuGPydjdfJQ_B4vX-MZktgpxr0QWyzPJQWhlF0qINeanQRlaKgjOMRBhrrePBlIUCXmooRSY0oMxljBGiFWNyvd_duvZnh74zm3bnmv6lYToUAkKhZJ9i-1TuWu8dlmbrqu_M_RoGZsBnBnxmwGcO-PrO1b5TIeJ_XgHwqHf_AGSlaHc</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Chan, Chi-Hang</creator><creator>Zhu, Yan</creator><creator>Li, Cheng</creator><creator>Zhang, Wai-Hong</creator><creator>Ho, Iok-Meng</creator><creator>Wei, Lai</creator><creator>U, Seng-Pan</creator><creator>Martins, Rui Paulo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8298-3244</orcidid><orcidid>https://orcid.org/0000-0002-7635-1101</orcidid></search><sort><creationdate>20171001</creationdate><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><author>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Calibration</topic><topic>Capacitors</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Decoupling</topic><topic>Error correction</topic><topic>Noise levels</topic><topic>Prototypes</topic><topic>Reference buffer</topic><topic>reference error calibration</topic><topic>Registers</topic><topic>Subtraction</topic><topic>successive approximation register (SAR) analog-to-digital converter (ADC)</topic><topic>Switches</topic><topic>Switching</topic><topic>System-on-chip</topic><topic>threshold reconfigurable comparator</topic><topic>Topology</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Chi-Hang</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhang, Wai-Hong</creatorcontrib><creatorcontrib>Ho, Iok-Meng</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>U, Seng-Pan</creatorcontrib><creatorcontrib>Martins, Rui Paulo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Chi-Hang</au><au>Zhu, Yan</au><au>Li, Cheng</au><au>Zhang, Wai-Hong</au><au>Ho, Iok-Meng</au><au>Wei, Lai</au><au>U, Seng-Pan</au><au>Martins, Rui Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>2576</spage><epage>2588</epage><pages>2576-2588</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2728784</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8298-3244</orcidid><orcidid>https://orcid.org/0000-0002-7635-1101</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2017-10, Vol.52 (10), p.2576-2588
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_8002584
source IEEE Electronic Library (IEL)
subjects Analog to digital conversion
Analog to digital converters
Calibration
Capacitors
Circuit design
CMOS
Decoupling
Error correction
Noise levels
Prototypes
Reference buffer
reference error calibration
Registers
Subtraction
successive approximation register (SAR) analog-to-digital converter (ADC)
Switches
Switching
System-on-chip
threshold reconfigurable comparator
Topology
Transient analysis
title 60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=60-dB%20SNDR%20100-MS/s%20SAR%20ADCs%20With%20Threshold%20Reconfigurable%20Reference%20Error%20Calibration&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chan,%20Chi-Hang&rft.date=2017-10-01&rft.volume=52&rft.issue=10&rft.spage=2576&rft.epage=2588&rft.pages=2576-2588&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2728784&rft_dat=%3Cproquest_RIE%3E1943304386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943304386&rft_id=info:pmid/&rft_ieee_id=8002584&rfr_iscdi=true