60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration
This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2017-10, Vol.52 (10), p.2576-2588 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2588 |
---|---|
container_issue | 10 |
container_start_page | 2576 |
container_title | IEEE journal of solid-state circuits |
container_volume | 52 |
creator | Chan, Chi-Hang Zhu, Yan Li, Cheng Zhang, Wai-Hong Ho, Iok-Meng Wei, Lai U, Seng-Pan Martins, Rui Paulo |
description | This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively. |
doi_str_mv | 10.1109/JSSC.2017.2728784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8002584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8002584</ieee_id><sourcerecordid>1943304386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdZpx3bi2MsSyksFpKY8dlacTGiqkBQ7XfD3JGrFanR1HyMdQi4ZTBgDPX1K02TCgcUTHnMVq_CIjFgUqYDF4vOYjACYCjQHOCVn3m96GYaKjci7hKC4oenL7ZIygOA5nXqazpZ0dpt4-lF1a7paO_Trti7oEvO2Kauvnctsjb0s0WGTI5071zqaZHVlXdZVbXNOTsqs9nhxuGPydjdfJQ_B4vX-MZktgpxr0QWyzPJQWhlF0qINeanQRlaKgjOMRBhrrePBlIUCXmooRSY0oMxljBGiFWNyvd_duvZnh74zm3bnmv6lYToUAkKhZJ9i-1TuWu8dlmbrqu_M_RoGZsBnBnxmwGcO-PrO1b5TIeJ_XgHwqHf_AGSlaHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943304386</pqid></control><display><type>article</type><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</creator><creatorcontrib>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</creatorcontrib><description>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2017.2728784</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital conversion ; Analog to digital converters ; Calibration ; Capacitors ; Circuit design ; CMOS ; Decoupling ; Error correction ; Noise levels ; Prototypes ; Reference buffer ; reference error calibration ; Registers ; Subtraction ; successive approximation register (SAR) analog-to-digital converter (ADC) ; Switches ; Switching ; System-on-chip ; threshold reconfigurable comparator ; Topology ; Transient analysis</subject><ispartof>IEEE journal of solid-state circuits, 2017-10, Vol.52 (10), p.2576-2588</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</citedby><cites>FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</cites><orcidid>0000-0002-8298-3244 ; 0000-0002-7635-1101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8002584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8002584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, Chi-Hang</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhang, Wai-Hong</creatorcontrib><creatorcontrib>Ho, Iok-Meng</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>U, Seng-Pan</creatorcontrib><creatorcontrib>Martins, Rui Paulo</creatorcontrib><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</description><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>Calibration</subject><subject>Capacitors</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>Decoupling</subject><subject>Error correction</subject><subject>Noise levels</subject><subject>Prototypes</subject><subject>Reference buffer</subject><subject>reference error calibration</subject><subject>Registers</subject><subject>Subtraction</subject><subject>successive approximation register (SAR) analog-to-digital converter (ADC)</subject><subject>Switches</subject><subject>Switching</subject><subject>System-on-chip</subject><subject>threshold reconfigurable comparator</subject><subject>Topology</subject><subject>Transient analysis</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdZpx3bi2MsSyksFpKY8dlacTGiqkBQ7XfD3JGrFanR1HyMdQi4ZTBgDPX1K02TCgcUTHnMVq_CIjFgUqYDF4vOYjACYCjQHOCVn3m96GYaKjci7hKC4oenL7ZIygOA5nXqazpZ0dpt4-lF1a7paO_Trti7oEvO2Kauvnctsjb0s0WGTI5071zqaZHVlXdZVbXNOTsqs9nhxuGPydjdfJQ_B4vX-MZktgpxr0QWyzPJQWhlF0qINeanQRlaKgjOMRBhrrePBlIUCXmooRSY0oMxljBGiFWNyvd_duvZnh74zm3bnmv6lYToUAkKhZJ9i-1TuWu8dlmbrqu_M_RoGZsBnBnxmwGcO-PrO1b5TIeJ_XgHwqHf_AGSlaHc</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Chan, Chi-Hang</creator><creator>Zhu, Yan</creator><creator>Li, Cheng</creator><creator>Zhang, Wai-Hong</creator><creator>Ho, Iok-Meng</creator><creator>Wei, Lai</creator><creator>U, Seng-Pan</creator><creator>Martins, Rui Paulo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8298-3244</orcidid><orcidid>https://orcid.org/0000-0002-7635-1101</orcidid></search><sort><creationdate>20171001</creationdate><title>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</title><author>Chan, Chi-Hang ; Zhu, Yan ; Li, Cheng ; Zhang, Wai-Hong ; Ho, Iok-Meng ; Wei, Lai ; U, Seng-Pan ; Martins, Rui Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6fac46b6556beb42f8eb5b63d21e5347999765566d802f90f3a390e6c67e5eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>Calibration</topic><topic>Capacitors</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>Decoupling</topic><topic>Error correction</topic><topic>Noise levels</topic><topic>Prototypes</topic><topic>Reference buffer</topic><topic>reference error calibration</topic><topic>Registers</topic><topic>Subtraction</topic><topic>successive approximation register (SAR) analog-to-digital converter (ADC)</topic><topic>Switches</topic><topic>Switching</topic><topic>System-on-chip</topic><topic>threshold reconfigurable comparator</topic><topic>Topology</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Chi-Hang</creatorcontrib><creatorcontrib>Zhu, Yan</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Zhang, Wai-Hong</creatorcontrib><creatorcontrib>Ho, Iok-Meng</creatorcontrib><creatorcontrib>Wei, Lai</creatorcontrib><creatorcontrib>U, Seng-Pan</creatorcontrib><creatorcontrib>Martins, Rui Paulo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Chi-Hang</au><au>Zhu, Yan</au><au>Li, Cheng</au><au>Zhang, Wai-Hong</au><au>Ho, Iok-Meng</au><au>Wei, Lai</au><au>U, Seng-Pan</au><au>Martins, Rui Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>2576</spage><epage>2588</epage><pages>2576-2588</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents a reference error calibration scheme for successive approximation register (SAR) analog-to-digital converters (ADCs) verified with two prototypes. Such a reference error often occurs in high-speed SAR ADCs due to the signal dependent fast switching transient, and leads to a large differential nonlinearity and missing codes, eventually degrading conversion accuracy. The calibration concept aims to differentiate the error outputs and correct them by simply performing a subtraction in the digital domain. It runs in the background with a little hardware overhead, and does not depend on the type of the input signal or reduce the dynamic range. Two prototypes were measured which are made up of different reference generation circuits. Design #1 has the reference voltage from off-chip and a 3-pF decoupling capacitor on-chip, while design #2 includes an on-chip reference buffer. Both designs were fabricated in 65-nm CMOS and achieve at least 9-dB improvement on signal-to-(Noise + Distortion) ratio (SNDR) after calibration. The total core area is around 0.012 mm 2 for both chips and the Nyquist SNDR of designs #1 and #2 is 59.03 and 57.93 dB, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2017.2728784</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8298-3244</orcidid><orcidid>https://orcid.org/0000-0002-7635-1101</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2017-10, Vol.52 (10), p.2576-2588 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_8002584 |
source | IEEE Electronic Library (IEL) |
subjects | Analog to digital conversion Analog to digital converters Calibration Capacitors Circuit design CMOS Decoupling Error correction Noise levels Prototypes Reference buffer reference error calibration Registers Subtraction successive approximation register (SAR) analog-to-digital converter (ADC) Switches Switching System-on-chip threshold reconfigurable comparator Topology Transient analysis |
title | 60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=60-dB%20SNDR%20100-MS/s%20SAR%20ADCs%20With%20Threshold%20Reconfigurable%20Reference%20Error%20Calibration&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Chan,%20Chi-Hang&rft.date=2017-10-01&rft.volume=52&rft.issue=10&rft.spage=2576&rft.epage=2588&rft.pages=2576-2588&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2017.2728784&rft_dat=%3Cproquest_RIE%3E1943304386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943304386&rft_id=info:pmid/&rft_ieee_id=8002584&rfr_iscdi=true |