Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer

Optimal allocation of distributed generation units is essential to ensure power loss minimization, while meeting the real and reactive power demands in a distribution network. This paper proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new metaheuri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017, Vol.5, p.14807-14818
Hauptverfasser: Sanjay, R., Jayabarathi, T., Raghunathan, T., Ramesh, V., Mithulananthan, Nadarajah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14818
container_issue
container_start_page 14807
container_title IEEE access
container_volume 5
creator Sanjay, R.
Jayabarathi, T.
Raghunathan, T.
Ramesh, V.
Mithulananthan, Nadarajah
description Optimal allocation of distributed generation units is essential to ensure power loss minimization, while meeting the real and reactive power demands in a distribution network. This paper proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new metaheuristic algorithm. This algorithm is applied to IEEE 33-, IEEE 69-, and Indian 85-bus radial distribution systems to minimize the power loss. The results show that there is a considerable reduction in the power loss and an enhancement of the voltage profile of the buses across the network. Comparisons show that the proposed method outperforms all other metaheuristic methods, and matches the best results by other methods, including exhaustive search, suggesting that the solution obtained is a global optimum. Furthermore, unlike for most other metaheuristic methods, this is achieved with no tuning of the algorithm on the part of the user, except for the specification of the population size.
doi_str_mv 10.1109/ACCESS.2017.2726586
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7987690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7987690</ieee_id><doaj_id>oai_doaj_org_article_9211e86b227f4e0db7dd8769588ca77e</doaj_id><sourcerecordid>2455945783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b63366015982acb28e15b5f430ce7911a81ce2789737aaa6c98042d6a80625043</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLsf2a-jWKuCxYOVHpfNZiIradZu4sH--q6mSOcyw5t5b2Z4STLGaIIxUi_T2Wy-3U4IwmJCBOFM8rtkQDBXGWWU3_-rH5NR2x5QDBkhJgbJ--bYuS9Tp9O69tZ0zjepr9JX13bBFacOynQBDYS-s2tds0-X5yK4iAc4p5--rtKrhvuB8JQ8VKZuYfSXh8nubf4xW2brzWI1m64zmyPZZQWnlHOEmZLE2IJIwKxgVU6RBaEwNhJbIEIqQYUxhlslUU5KbiTihKGcDpNVr1t6c9DHED8IZ-2N01fAh702oXO2Bq0IxiB5QYiockBlIcpSivi8lNYIAVHrudc6Bv99grbTB38KTTxfk5wxlTMhaZyi_ZQNvm0DVLetGOmLDbq3QV9s0H82RNa4ZzkAuDGEuhyA6C-DwYGh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455945783</pqid></control><display><type>article</type><title>Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sanjay, R. ; Jayabarathi, T. ; Raghunathan, T. ; Ramesh, V. ; Mithulananthan, Nadarajah</creator><creatorcontrib>Sanjay, R. ; Jayabarathi, T. ; Raghunathan, T. ; Ramesh, V. ; Mithulananthan, Nadarajah</creatorcontrib><description>Optimal allocation of distributed generation units is essential to ensure power loss minimization, while meeting the real and reactive power demands in a distribution network. This paper proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new metaheuristic algorithm. This algorithm is applied to IEEE 33-, IEEE 69-, and Indian 85-bus radial distribution systems to minimize the power loss. The results show that there is a considerable reduction in the power loss and an enhancement of the voltage profile of the buses across the network. Comparisons show that the proposed method outperforms all other metaheuristic methods, and matches the best results by other methods, including exhaustive search, suggesting that the solution obtained is a global optimum. Furthermore, unlike for most other metaheuristic methods, this is achieved with no tuning of the algorithm on the part of the user, except for the specification of the population size.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2726586</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Distributed generation ; Distributed generation (DG) ; Distributed power generation ; Electric power distribution ; Heuristic methods ; Hybrid power systems ; loss minimization ; metaheuristic algorithm ; optimal DG location ; optimal DG size ; Optimization ; Particle swarm optimization ; Radial distribution ; radial distribution system ; Reactive power ; Resource management ; Tuning ; Xenon</subject><ispartof>IEEE access, 2017, Vol.5, p.14807-14818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b63366015982acb28e15b5f430ce7911a81ce2789737aaa6c98042d6a80625043</citedby><cites>FETCH-LOGICAL-c408t-b63366015982acb28e15b5f430ce7911a81ce2789737aaa6c98042d6a80625043</cites><orcidid>0000-0002-6706-2148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7987690$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Sanjay, R.</creatorcontrib><creatorcontrib>Jayabarathi, T.</creatorcontrib><creatorcontrib>Raghunathan, T.</creatorcontrib><creatorcontrib>Ramesh, V.</creatorcontrib><creatorcontrib>Mithulananthan, Nadarajah</creatorcontrib><title>Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer</title><title>IEEE access</title><addtitle>Access</addtitle><description>Optimal allocation of distributed generation units is essential to ensure power loss minimization, while meeting the real and reactive power demands in a distribution network. This paper proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new metaheuristic algorithm. This algorithm is applied to IEEE 33-, IEEE 69-, and Indian 85-bus radial distribution systems to minimize the power loss. The results show that there is a considerable reduction in the power loss and an enhancement of the voltage profile of the buses across the network. Comparisons show that the proposed method outperforms all other metaheuristic methods, and matches the best results by other methods, including exhaustive search, suggesting that the solution obtained is a global optimum. Furthermore, unlike for most other metaheuristic methods, this is achieved with no tuning of the algorithm on the part of the user, except for the specification of the population size.</description><subject>Algorithms</subject><subject>Distributed generation</subject><subject>Distributed generation (DG)</subject><subject>Distributed power generation</subject><subject>Electric power distribution</subject><subject>Heuristic methods</subject><subject>Hybrid power systems</subject><subject>loss minimization</subject><subject>metaheuristic algorithm</subject><subject>optimal DG location</subject><subject>optimal DG size</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Radial distribution</subject><subject>radial distribution system</subject><subject>Reactive power</subject><subject>Resource management</subject><subject>Tuning</subject><subject>Xenon</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLsf2a-jWKuCxYOVHpfNZiIradZu4sH--q6mSOcyw5t5b2Z4STLGaIIxUi_T2Wy-3U4IwmJCBOFM8rtkQDBXGWWU3_-rH5NR2x5QDBkhJgbJ--bYuS9Tp9O69tZ0zjepr9JX13bBFacOynQBDYS-s2tds0-X5yK4iAc4p5--rtKrhvuB8JQ8VKZuYfSXh8nubf4xW2brzWI1m64zmyPZZQWnlHOEmZLE2IJIwKxgVU6RBaEwNhJbIEIqQYUxhlslUU5KbiTihKGcDpNVr1t6c9DHED8IZ-2N01fAh702oXO2Bq0IxiB5QYiockBlIcpSivi8lNYIAVHrudc6Bv99grbTB38KTTxfk5wxlTMhaZyi_ZQNvm0DVLetGOmLDbq3QV9s0H82RNa4ZzkAuDGEuhyA6C-DwYGh</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Sanjay, R.</creator><creator>Jayabarathi, T.</creator><creator>Raghunathan, T.</creator><creator>Ramesh, V.</creator><creator>Mithulananthan, Nadarajah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6706-2148</orcidid></search><sort><creationdate>2017</creationdate><title>Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer</title><author>Sanjay, R. ; Jayabarathi, T. ; Raghunathan, T. ; Ramesh, V. ; Mithulananthan, Nadarajah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b63366015982acb28e15b5f430ce7911a81ce2789737aaa6c98042d6a80625043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Distributed generation</topic><topic>Distributed generation (DG)</topic><topic>Distributed power generation</topic><topic>Electric power distribution</topic><topic>Heuristic methods</topic><topic>Hybrid power systems</topic><topic>loss minimization</topic><topic>metaheuristic algorithm</topic><topic>optimal DG location</topic><topic>optimal DG size</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Radial distribution</topic><topic>radial distribution system</topic><topic>Reactive power</topic><topic>Resource management</topic><topic>Tuning</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanjay, R.</creatorcontrib><creatorcontrib>Jayabarathi, T.</creatorcontrib><creatorcontrib>Raghunathan, T.</creatorcontrib><creatorcontrib>Ramesh, V.</creatorcontrib><creatorcontrib>Mithulananthan, Nadarajah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanjay, R.</au><au>Jayabarathi, T.</au><au>Raghunathan, T.</au><au>Ramesh, V.</au><au>Mithulananthan, Nadarajah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017</date><risdate>2017</risdate><volume>5</volume><spage>14807</spage><epage>14818</epage><pages>14807-14818</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Optimal allocation of distributed generation units is essential to ensure power loss minimization, while meeting the real and reactive power demands in a distribution network. This paper proposes a solution to this non-convex, discrete problem by using the hybrid grey wolf optimizer, a new metaheuristic algorithm. This algorithm is applied to IEEE 33-, IEEE 69-, and Indian 85-bus radial distribution systems to minimize the power loss. The results show that there is a considerable reduction in the power loss and an enhancement of the voltage profile of the buses across the network. Comparisons show that the proposed method outperforms all other metaheuristic methods, and matches the best results by other methods, including exhaustive search, suggesting that the solution obtained is a global optimum. Furthermore, unlike for most other metaheuristic methods, this is achieved with no tuning of the algorithm on the part of the user, except for the specification of the population size.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2726586</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6706-2148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017, Vol.5, p.14807-14818
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_7987690
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Distributed generation
Distributed generation (DG)
Distributed power generation
Electric power distribution
Heuristic methods
Hybrid power systems
loss minimization
metaheuristic algorithm
optimal DG location
optimal DG size
Optimization
Particle swarm optimization
Radial distribution
radial distribution system
Reactive power
Resource management
Tuning
Xenon
title Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Allocation%20of%20Distributed%20Generation%20Using%20Hybrid%20Grey%20Wolf%20Optimizer&rft.jtitle=IEEE%20access&rft.au=Sanjay,%20R.&rft.date=2017&rft.volume=5&rft.spage=14807&rft.epage=14818&rft.pages=14807-14818&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2726586&rft_dat=%3Cproquest_ieee_%3E2455945783%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455945783&rft_id=info:pmid/&rft_ieee_id=7987690&rft_doaj_id=oai_doaj_org_article_9211e86b227f4e0db7dd8769588ca77e&rfr_iscdi=true