Online Learning to Approach a Person With No Regret
Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal c...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2018-01, Vol.3 (1), p.52-59 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | IEEE robotics and automation letters |
container_volume | 3 |
creator | Hyemin Ahn Yoonseon Oh Sungjoon Choi Tomlin, Claire J. Songhwai Oh |
description | Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases. |
doi_str_mv | 10.1109/LRA.2017.2729783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7987073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7987073</ieee_id><sourcerecordid>2299370089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpeA562TTLOzOZbiFyxWiuIxxO1su6Xu1mR78L83pUU8zWN4b-bxE-JawVgpsHflYjrWoGisSVsq8EwMNBJlSHl-_k9filGMGwBQRhNaMxA4b7dNy7JkH9qmXcm-k9PdLnS-WksvXznErpUfTb-WL51c8CpwfyUuar-NPDrNoXh_uH-bPWXl_PF5Ni2zChH7rNDW5LSc5F75in3asf2soaiMUTWAIWNVYVFxrVSdT3JeEukJ2sJXOlX0OBS3x7upzveeY-823T606aXT2lokgJQfCji6qtDFGLh2u9B8-fDjFLgDHZfouAMdd6KTIjfHSMPMf3ayBQEh_gI7ylzv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370089</pqid></control><display><type>article</type><title>Online Learning to Approach a Person With No Regret</title><source>IEEE Electronic Library (IEL)</source><creator>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</creator><creatorcontrib>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</creatorcontrib><description>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2017.2729783</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anthropology ; Comfort ; Face ; Gaussian process ; Gaussian processes ; Human robot interaction ; Indexes ; motion and path planning ; personalized learning ; Robot kinematics ; Service robots ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.52-59</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</citedby><cites>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7987073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7987073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyemin Ahn</creatorcontrib><creatorcontrib>Yoonseon Oh</creatorcontrib><creatorcontrib>Sungjoon Choi</creatorcontrib><creatorcontrib>Tomlin, Claire J.</creatorcontrib><creatorcontrib>Songhwai Oh</creatorcontrib><title>Online Learning to Approach a Person With No Regret</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</description><subject>Anthropology</subject><subject>Comfort</subject><subject>Face</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Human robot interaction</subject><subject>Indexes</subject><subject>motion and path planning</subject><subject>personalized learning</subject><subject>Robot kinematics</subject><subject>Service robots</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpeA562TTLOzOZbiFyxWiuIxxO1su6Xu1mR78L83pUU8zWN4b-bxE-JawVgpsHflYjrWoGisSVsq8EwMNBJlSHl-_k9filGMGwBQRhNaMxA4b7dNy7JkH9qmXcm-k9PdLnS-WksvXznErpUfTb-WL51c8CpwfyUuar-NPDrNoXh_uH-bPWXl_PF5Ni2zChH7rNDW5LSc5F75in3asf2soaiMUTWAIWNVYVFxrVSdT3JeEukJ2sJXOlX0OBS3x7upzveeY-823T606aXT2lokgJQfCji6qtDFGLh2u9B8-fDjFLgDHZfouAMdd6KTIjfHSMPMf3ayBQEh_gI7ylzv</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Hyemin Ahn</creator><creator>Yoonseon Oh</creator><creator>Sungjoon Choi</creator><creator>Tomlin, Claire J.</creator><creator>Songhwai Oh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Online Learning to Approach a Person With No Regret</title><author>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropology</topic><topic>Comfort</topic><topic>Face</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Human robot interaction</topic><topic>Indexes</topic><topic>motion and path planning</topic><topic>personalized learning</topic><topic>Robot kinematics</topic><topic>Service robots</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyemin Ahn</creatorcontrib><creatorcontrib>Yoonseon Oh</creatorcontrib><creatorcontrib>Sungjoon Choi</creatorcontrib><creatorcontrib>Tomlin, Claire J.</creatorcontrib><creatorcontrib>Songhwai Oh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyemin Ahn</au><au>Yoonseon Oh</au><au>Sungjoon Choi</au><au>Tomlin, Claire J.</au><au>Songhwai Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Learning to Approach a Person With No Regret</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-01</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>52</spage><epage>59</epage><pages>52-59</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2017.2729783</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.52-59 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_7987073 |
source | IEEE Electronic Library (IEL) |
subjects | Anthropology Comfort Face Gaussian process Gaussian processes Human robot interaction Indexes motion and path planning personalized learning Robot kinematics Service robots Trajectory |
title | Online Learning to Approach a Person With No Regret |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Learning%20to%20Approach%20a%20Person%20With%20No%20Regret&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hyemin%20Ahn&rft.date=2018-01&rft.volume=3&rft.issue=1&rft.spage=52&rft.epage=59&rft.pages=52-59&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2017.2729783&rft_dat=%3Cproquest_RIE%3E2299370089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299370089&rft_id=info:pmid/&rft_ieee_id=7987073&rfr_iscdi=true |