Online Learning to Approach a Person With No Regret

Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2018-01, Vol.3 (1), p.52-59
Hauptverfasser: Hyemin Ahn, Yoonseon Oh, Sungjoon Choi, Tomlin, Claire J., Songhwai Oh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 52
container_title IEEE robotics and automation letters
container_volume 3
creator Hyemin Ahn
Yoonseon Oh
Sungjoon Choi
Tomlin, Claire J.
Songhwai Oh
description Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.
doi_str_mv 10.1109/LRA.2017.2729783
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7987073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7987073</ieee_id><sourcerecordid>2299370089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWGrvgpeA562TTLOzOZbiFyxWiuIxxO1su6Xu1mR78L83pUU8zWN4b-bxE-JawVgpsHflYjrWoGisSVsq8EwMNBJlSHl-_k9filGMGwBQRhNaMxA4b7dNy7JkH9qmXcm-k9PdLnS-WksvXznErpUfTb-WL51c8CpwfyUuar-NPDrNoXh_uH-bPWXl_PF5Ni2zChH7rNDW5LSc5F75in3asf2soaiMUTWAIWNVYVFxrVSdT3JeEukJ2sJXOlX0OBS3x7upzveeY-823T606aXT2lokgJQfCji6qtDFGLh2u9B8-fDjFLgDHZfouAMdd6KTIjfHSMPMf3ayBQEh_gI7ylzv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299370089</pqid></control><display><type>article</type><title>Online Learning to Approach a Person With No Regret</title><source>IEEE Electronic Library (IEL)</source><creator>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</creator><creatorcontrib>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</creatorcontrib><description>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2017.2729783</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anthropology ; Comfort ; Face ; Gaussian process ; Gaussian processes ; Human robot interaction ; Indexes ; motion and path planning ; personalized learning ; Robot kinematics ; Service robots ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.52-59</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</citedby><cites>FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7987073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7987073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyemin Ahn</creatorcontrib><creatorcontrib>Yoonseon Oh</creatorcontrib><creatorcontrib>Sungjoon Choi</creatorcontrib><creatorcontrib>Tomlin, Claire J.</creatorcontrib><creatorcontrib>Songhwai Oh</creatorcontrib><title>Online Learning to Approach a Person With No Regret</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</description><subject>Anthropology</subject><subject>Comfort</subject><subject>Face</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Human robot interaction</subject><subject>Indexes</subject><subject>motion and path planning</subject><subject>personalized learning</subject><subject>Robot kinematics</subject><subject>Service robots</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWGrvgpeA562TTLOzOZbiFyxWiuIxxO1su6Xu1mR78L83pUU8zWN4b-bxE-JawVgpsHflYjrWoGisSVsq8EwMNBJlSHl-_k9filGMGwBQRhNaMxA4b7dNy7JkH9qmXcm-k9PdLnS-WksvXznErpUfTb-WL51c8CpwfyUuar-NPDrNoXh_uH-bPWXl_PF5Ni2zChH7rNDW5LSc5F75in3asf2soaiMUTWAIWNVYVFxrVSdT3JeEukJ2sJXOlX0OBS3x7upzveeY-823T606aXT2lokgJQfCji6qtDFGLh2u9B8-fDjFLgDHZfouAMdd6KTIjfHSMPMf3ayBQEh_gI7ylzv</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Hyemin Ahn</creator><creator>Yoonseon Oh</creator><creator>Sungjoon Choi</creator><creator>Tomlin, Claire J.</creator><creator>Songhwai Oh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Online Learning to Approach a Person With No Regret</title><author>Hyemin Ahn ; Yoonseon Oh ; Sungjoon Choi ; Tomlin, Claire J. ; Songhwai Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-829567d46a1acea333e9bf08c551f00575918931ef11f646ed7724398ac2000a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropology</topic><topic>Comfort</topic><topic>Face</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Human robot interaction</topic><topic>Indexes</topic><topic>motion and path planning</topic><topic>personalized learning</topic><topic>Robot kinematics</topic><topic>Service robots</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyemin Ahn</creatorcontrib><creatorcontrib>Yoonseon Oh</creatorcontrib><creatorcontrib>Sungjoon Choi</creatorcontrib><creatorcontrib>Tomlin, Claire J.</creatorcontrib><creatorcontrib>Songhwai Oh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyemin Ahn</au><au>Yoonseon Oh</au><au>Sungjoon Choi</au><au>Tomlin, Claire J.</au><au>Songhwai Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Learning to Approach a Person With No Regret</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2018-01</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>52</spage><epage>59</epage><pages>52-59</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Each person has a different personal space and behaves differently when another person approaches. Based on this observation, we propose a novel method to learn how to approach a person comfortably based on the person's preference while avoiding uncomfortable encounters. We propose a personal comfort field to learn each person's preference about an approaching object. A personal comfort field is based on existing theories in anthropology and personalized for each user through repeated encounters. We propose an online method to learn a personal comfort field of a user, i.e., personalized learning, based on the concept from the Gaussian process upper confidence bound and show that the proposed method has no regret asymptotically. The effectiveness of the proposed method has been extensively validated in simulation and real-world experiments. Results show that the proposed method can gradually learn the personalized approaching behavior preferred by the user as the number of encounters increases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2017.2729783</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2018-01, Vol.3 (1), p.52-59
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_7987073
source IEEE Electronic Library (IEL)
subjects Anthropology
Comfort
Face
Gaussian process
Gaussian processes
Human robot interaction
Indexes
motion and path planning
personalized learning
Robot kinematics
Service robots
Trajectory
title Online Learning to Approach a Person With No Regret
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Learning%20to%20Approach%20a%20Person%20With%20No%20Regret&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hyemin%20Ahn&rft.date=2018-01&rft.volume=3&rft.issue=1&rft.spage=52&rft.epage=59&rft.pages=52-59&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2017.2729783&rft_dat=%3Cproquest_RIE%3E2299370089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299370089&rft_id=info:pmid/&rft_ieee_id=7987073&rfr_iscdi=true