FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras

Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2018-08, Vol.24 (8), p.2284-2297
Hauptverfasser: Xu, Lan, Liu, Yebin, Cheng, Wei, Guo, Kaiwen, Zhou, Guyue, Dai, Qionghai, Fang, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2297
container_issue 8
container_start_page 2284
container_title IEEE transactions on visualization and computer graphics
container_volume 24
creator Xu, Lan
Liu, Yebin
Cheng, Wei
Guo, Kaiwen
Zhou, Guyue
Dai, Qionghai
Fang, Lu
description Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
doi_str_mv 10.1109/TVCG.2017.2728660
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7983006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7983006</ieee_id><sourcerecordid>2063040173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoXkYfQAQpuHHTMbcmqTspjhdmcDO6DWl7ItW2GZN24dubMqMLVwk53__n8CF0TvCcEJzfrN-KhznFRM6ppEoIvIeOSc5JijMs9uMdS5lSQcUROgnhA2PCucoP0RFVksosY8foedF-F2Zzm6yM_wTfQgjJyg2N65P4PIwektfQ9O_JamyHZtNCcjcOrnedG0MSs9OoMB14E07RgTVtgLPdOUOvi_t18ZguXx6eirtlWjGeDymtS6UkWJqRupRKWc4qYXEtrJEAvAYpOFBriZF1SW2ViVIoqJhg2HBaMTZD19vejXdfI4RBd02ooG1ND3ErTXJKM8wUziJ69Q_9cKPv43aa4ljIo7upkGypyrsQPFi98U1n_LcmWE-i9SRaT6L1TnTMXO6ax7KD-i_xazYCF1ugAYC_scwVw_HnH8B0gVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063040173</pqid></control><display><type>article</type><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</creator><creatorcontrib>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</creatorcontrib><description>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2728660</identifier><identifier>PMID: 28727553</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Data capture ; Flight ; flying camera ; Geometry ; Image reconstruction ; Markerless motion capture ; Motion capture ; non-rigid surface reconstruction ; Odometers ; Surface motion ; Surface reconstruction ; Target tracking ; Tracking problem ; Unmanned aerial vehicles ; Visual flight</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2284-2297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</citedby><cites>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</cites><orcidid>0000-0003-3215-0225 ; 0000-0003-3655-2723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7983006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7983006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28727553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Guo, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</description><subject>Cameras</subject><subject>Data capture</subject><subject>Flight</subject><subject>flying camera</subject><subject>Geometry</subject><subject>Image reconstruction</subject><subject>Markerless motion capture</subject><subject>Motion capture</subject><subject>non-rigid surface reconstruction</subject><subject>Odometers</subject><subject>Surface motion</subject><subject>Surface reconstruction</subject><subject>Target tracking</subject><subject>Tracking problem</subject><subject>Unmanned aerial vehicles</subject><subject>Visual flight</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhoMoXkYfQAQpuHHTMbcmqTspjhdmcDO6DWl7ItW2GZN24dubMqMLVwk53__n8CF0TvCcEJzfrN-KhznFRM6ppEoIvIeOSc5JijMs9uMdS5lSQcUROgnhA2PCucoP0RFVksosY8foedF-F2Zzm6yM_wTfQgjJyg2N65P4PIwektfQ9O_JamyHZtNCcjcOrnedG0MSs9OoMB14E07RgTVtgLPdOUOvi_t18ZguXx6eirtlWjGeDymtS6UkWJqRupRKWc4qYXEtrJEAvAYpOFBriZF1SW2ViVIoqJhg2HBaMTZD19vejXdfI4RBd02ooG1ND3ErTXJKM8wUziJ69Q_9cKPv43aa4ljIo7upkGypyrsQPFi98U1n_LcmWE-i9SRaT6L1TnTMXO6ax7KD-i_xazYCF1ugAYC_scwVw_HnH8B0gVo</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Xu, Lan</creator><creator>Liu, Yebin</creator><creator>Cheng, Wei</creator><creator>Guo, Kaiwen</creator><creator>Zhou, Guyue</creator><creator>Dai, Qionghai</creator><creator>Fang, Lu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3215-0225</orcidid><orcidid>https://orcid.org/0000-0003-3655-2723</orcidid></search><sort><creationdate>20180801</creationdate><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><author>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Data capture</topic><topic>Flight</topic><topic>flying camera</topic><topic>Geometry</topic><topic>Image reconstruction</topic><topic>Markerless motion capture</topic><topic>Motion capture</topic><topic>non-rigid surface reconstruction</topic><topic>Odometers</topic><topic>Surface motion</topic><topic>Surface reconstruction</topic><topic>Target tracking</topic><topic>Tracking problem</topic><topic>Unmanned aerial vehicles</topic><topic>Visual flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Guo, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Lan</au><au>Liu, Yebin</au><au>Cheng, Wei</au><au>Guo, Kaiwen</au><au>Zhou, Guyue</au><au>Dai, Qionghai</au><au>Fang, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>2284</spage><epage>2297</epage><pages>2284-2297</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28727553</pmid><doi>10.1109/TVCG.2017.2728660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3215-0225</orcidid><orcidid>https://orcid.org/0000-0003-3655-2723</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2284-2297
issn 1077-2626
1941-0506
language eng
recordid cdi_ieee_primary_7983006
source IEEE Electronic Library (IEL)
subjects Cameras
Data capture
Flight
flying camera
Geometry
Image reconstruction
Markerless motion capture
Motion capture
non-rigid surface reconstruction
Odometers
Surface motion
Surface reconstruction
Target tracking
Tracking problem
Unmanned aerial vehicles
Visual flight
title FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FlyCap:%20Markerless%20Motion%20Capture%20Using%20Multiple%20Autonomous%20Flying%20Cameras&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Xu,%20Lan&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=2284&rft.epage=2297&rft.pages=2284-2297&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2728660&rft_dat=%3Cproquest_RIE%3E2063040173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063040173&rft_id=info:pmid/28727553&rft_ieee_id=7983006&rfr_iscdi=true