FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each int...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2018-08, Vol.24 (8), p.2284-2297 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2297 |
---|---|
container_issue | 8 |
container_start_page | 2284 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 24 |
creator | Xu, Lan Liu, Yebin Cheng, Wei Guo, Kaiwen Zhou, Guyue Dai, Qionghai Fang, Lu |
description | Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results. |
doi_str_mv | 10.1109/TVCG.2017.2728660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7983006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7983006</ieee_id><sourcerecordid>2063040173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</originalsourceid><addsrcrecordid>eNpdkMtKxDAUhoMoXkYfQAQpuHHTMbcmqTspjhdmcDO6DWl7ItW2GZN24dubMqMLVwk53__n8CF0TvCcEJzfrN-KhznFRM6ppEoIvIeOSc5JijMs9uMdS5lSQcUROgnhA2PCucoP0RFVksosY8foedF-F2Zzm6yM_wTfQgjJyg2N65P4PIwektfQ9O_JamyHZtNCcjcOrnedG0MSs9OoMB14E07RgTVtgLPdOUOvi_t18ZguXx6eirtlWjGeDymtS6UkWJqRupRKWc4qYXEtrJEAvAYpOFBriZF1SW2ViVIoqJhg2HBaMTZD19vejXdfI4RBd02ooG1ND3ErTXJKM8wUziJ69Q_9cKPv43aa4ljIo7upkGypyrsQPFi98U1n_LcmWE-i9SRaT6L1TnTMXO6ax7KD-i_xazYCF1ugAYC_scwVw_HnH8B0gVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063040173</pqid></control><display><type>article</type><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</creator><creatorcontrib>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</creatorcontrib><description>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2728660</identifier><identifier>PMID: 28727553</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Data capture ; Flight ; flying camera ; Geometry ; Image reconstruction ; Markerless motion capture ; Motion capture ; non-rigid surface reconstruction ; Odometers ; Surface motion ; Surface reconstruction ; Target tracking ; Tracking problem ; Unmanned aerial vehicles ; Visual flight</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2284-2297</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</citedby><cites>FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</cites><orcidid>0000-0003-3215-0225 ; 0000-0003-3655-2723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7983006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7983006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28727553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Guo, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</description><subject>Cameras</subject><subject>Data capture</subject><subject>Flight</subject><subject>flying camera</subject><subject>Geometry</subject><subject>Image reconstruction</subject><subject>Markerless motion capture</subject><subject>Motion capture</subject><subject>non-rigid surface reconstruction</subject><subject>Odometers</subject><subject>Surface motion</subject><subject>Surface reconstruction</subject><subject>Target tracking</subject><subject>Tracking problem</subject><subject>Unmanned aerial vehicles</subject><subject>Visual flight</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKxDAUhoMoXkYfQAQpuHHTMbcmqTspjhdmcDO6DWl7ItW2GZN24dubMqMLVwk53__n8CF0TvCcEJzfrN-KhznFRM6ppEoIvIeOSc5JijMs9uMdS5lSQcUROgnhA2PCucoP0RFVksosY8foedF-F2Zzm6yM_wTfQgjJyg2N65P4PIwektfQ9O_JamyHZtNCcjcOrnedG0MSs9OoMB14E07RgTVtgLPdOUOvi_t18ZguXx6eirtlWjGeDymtS6UkWJqRupRKWc4qYXEtrJEAvAYpOFBriZF1SW2ViVIoqJhg2HBaMTZD19vejXdfI4RBd02ooG1ND3ErTXJKM8wUziJ69Q_9cKPv43aa4ljIo7upkGypyrsQPFi98U1n_LcmWE-i9SRaT6L1TnTMXO6ax7KD-i_xazYCF1ugAYC_scwVw_HnH8B0gVo</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Xu, Lan</creator><creator>Liu, Yebin</creator><creator>Cheng, Wei</creator><creator>Guo, Kaiwen</creator><creator>Zhou, Guyue</creator><creator>Dai, Qionghai</creator><creator>Fang, Lu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3215-0225</orcidid><orcidid>https://orcid.org/0000-0003-3655-2723</orcidid></search><sort><creationdate>20180801</creationdate><title>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</title><author>Xu, Lan ; Liu, Yebin ; Cheng, Wei ; Guo, Kaiwen ; Zhou, Guyue ; Dai, Qionghai ; Fang, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-2db887ef251db788f43c6f0d6fa7ee4de764e2ff1a7db2fc56b68ec3630a42c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cameras</topic><topic>Data capture</topic><topic>Flight</topic><topic>flying camera</topic><topic>Geometry</topic><topic>Image reconstruction</topic><topic>Markerless motion capture</topic><topic>Motion capture</topic><topic>non-rigid surface reconstruction</topic><topic>Odometers</topic><topic>Surface motion</topic><topic>Surface reconstruction</topic><topic>Target tracking</topic><topic>Tracking problem</topic><topic>Unmanned aerial vehicles</topic><topic>Visual flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lan</creatorcontrib><creatorcontrib>Liu, Yebin</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Guo, Kaiwen</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><creatorcontrib>Fang, Lu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Lan</au><au>Liu, Yebin</au><au>Cheng, Wei</au><au>Guo, Kaiwen</au><au>Zhou, Guyue</au><au>Dai, Qionghai</au><au>Fang, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>2284</spage><epage>2297</epage><pages>2284-2297</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28727553</pmid><doi>10.1109/TVCG.2017.2728660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3215-0225</orcidid><orcidid>https://orcid.org/0000-0003-3655-2723</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2284-2297 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_7983006 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Data capture Flight flying camera Geometry Image reconstruction Markerless motion capture Motion capture non-rigid surface reconstruction Odometers Surface motion Surface reconstruction Target tracking Tracking problem Unmanned aerial vehicles Visual flight |
title | FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FlyCap:%20Markerless%20Motion%20Capture%20Using%20Multiple%20Autonomous%20Flying%20Cameras&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Xu,%20Lan&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=2284&rft.epage=2297&rft.pages=2284-2297&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2728660&rft_dat=%3Cproquest_RIE%3E2063040173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063040173&rft_id=info:pmid/28727553&rft_ieee_id=7983006&rfr_iscdi=true |