Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images

Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both withi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-09, Vol.14 (9), p.1469-1473
Hauptverfasser: Xiao, Zhifeng, Gong, Yiping, Long, Yang, Li, Deren, Wang, Xiaoying, Liu, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1473
container_issue 9
container_start_page 1469
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Xiao, Zhifeng
Gong, Yiping
Long, Yang
Li, Deren
Wang, Xiaoying
Liu, Hua
description Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.
doi_str_mv 10.1109/LGRS.2017.2712638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7979532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979532</ieee_id><sourcerecordid>2174479018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zzya9nNPNwWSwKewupOnp6NjamqQX_ntbNrw6L7wfBx6EHimZUEqyl9Vis50wQtWEKcpSrq_QiEqpEyIVvR60kInM9O4W3YVwIIQJrdUI7aaVbxsf8RtEcLFqavxqAxS4FxZ_dsdYBWePgOddGMw52Nh5wGXj8bqNVe_hDZyaCHgLdajqPV6e7B7CPbop7THAw-WO0ff8_Wv2kazWi-Vsukocy3hMnMtFIRlQy3LJtNKuZKBlylNntaR5aYFJ7lKiC1ZYoXOhpCpEzjMtSG4ZH6Pn827rm58OQjSHpvN1_9IwqoRQGaG6T9FzyvkmBA-laX11sv7XUGIGgGYAaAaA5gKw7zydOxUA_OdVpjLJGf8D2mtsMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174479018</pqid></control><display><type>article</type><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</creator><creatorcontrib>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</creatorcontrib><description>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2712638</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airports ; Convolutional neural network (CNN) ; Detection ; Feature extraction ; GoogleNet-light feature (GoogleNet-LF) ; hard negative mining (HNM) ; Image detection ; Image segmentation ; Light ; Localization ; Localization method ; Multiscale analysis ; multiscale deep fusion feature ; Object detection ; Redundancy ; Remote sensing ; remote-sensing airport detection ; Roads ; Support vector machines</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1469-1473</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</citedby><cites>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</cites><orcidid>0000-0002-8239-2268 ; 0000-0002-8233-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7979532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7979532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Gong, Yiping</creatorcontrib><creatorcontrib>Long, Yang</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Wang, Xiaoying</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</description><subject>Airports</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>GoogleNet-light feature (GoogleNet-LF)</subject><subject>hard negative mining (HNM)</subject><subject>Image detection</subject><subject>Image segmentation</subject><subject>Light</subject><subject>Localization</subject><subject>Localization method</subject><subject>Multiscale analysis</subject><subject>multiscale deep fusion feature</subject><subject>Object detection</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>remote-sensing airport detection</subject><subject>Roads</subject><subject>Support vector machines</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zzya9nNPNwWSwKewupOnp6NjamqQX_ntbNrw6L7wfBx6EHimZUEqyl9Vis50wQtWEKcpSrq_QiEqpEyIVvR60kInM9O4W3YVwIIQJrdUI7aaVbxsf8RtEcLFqavxqAxS4FxZ_dsdYBWePgOddGMw52Nh5wGXj8bqNVe_hDZyaCHgLdajqPV6e7B7CPbop7THAw-WO0ff8_Wv2kazWi-Vsukocy3hMnMtFIRlQy3LJtNKuZKBlylNntaR5aYFJ7lKiC1ZYoXOhpCpEzjMtSG4ZH6Pn827rm58OQjSHpvN1_9IwqoRQGaG6T9FzyvkmBA-laX11sv7XUGIGgGYAaAaA5gKw7zydOxUA_OdVpjLJGf8D2mtsMA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xiao, Zhifeng</creator><creator>Gong, Yiping</creator><creator>Long, Yang</creator><creator>Li, Deren</creator><creator>Wang, Xiaoying</creator><creator>Liu, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8239-2268</orcidid><orcidid>https://orcid.org/0000-0002-8233-3778</orcidid></search><sort><creationdate>20170901</creationdate><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><author>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airports</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>GoogleNet-light feature (GoogleNet-LF)</topic><topic>hard negative mining (HNM)</topic><topic>Image detection</topic><topic>Image segmentation</topic><topic>Light</topic><topic>Localization</topic><topic>Localization method</topic><topic>Multiscale analysis</topic><topic>multiscale deep fusion feature</topic><topic>Object detection</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>remote-sensing airport detection</topic><topic>Roads</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Gong, Yiping</creatorcontrib><creatorcontrib>Long, Yang</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Wang, Xiaoying</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Zhifeng</au><au>Gong, Yiping</au><au>Long, Yang</au><au>Li, Deren</au><au>Wang, Xiaoying</au><au>Liu, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>14</volume><issue>9</issue><spage>1469</spage><epage>1473</epage><pages>1469-1473</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2712638</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8239-2268</orcidid><orcidid>https://orcid.org/0000-0002-8233-3778</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1469-1473
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_7979532
source IEEE Electronic Library (IEL)
subjects Airports
Convolutional neural network (CNN)
Detection
Feature extraction
GoogleNet-light feature (GoogleNet-LF)
hard negative mining (HNM)
Image detection
Image segmentation
Light
Localization
Localization method
Multiscale analysis
multiscale deep fusion feature
Object detection
Redundancy
Remote sensing
remote-sensing airport detection
Roads
Support vector machines
title Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airport%20Detection%20Based%20on%20a%20Multiscale%20Fusion%20Feature%20for%20Optical%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xiao,%20Zhifeng&rft.date=2017-09-01&rft.volume=14&rft.issue=9&rft.spage=1469&rft.epage=1473&rft.pages=1469-1473&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2712638&rft_dat=%3Cproquest_RIE%3E2174479018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174479018&rft_id=info:pmid/&rft_ieee_id=7979532&rfr_iscdi=true