Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images
Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both withi...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-09, Vol.14 (9), p.1469-1473 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1473 |
---|---|
container_issue | 9 |
container_start_page | 1469 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Xiao, Zhifeng Gong, Yiping Long, Yang Li, Deren Wang, Xiaoying Liu, Hua |
description | Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information. |
doi_str_mv | 10.1109/LGRS.2017.2712638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7979532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979532</ieee_id><sourcerecordid>2174479018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zzya9nNPNwWSwKewupOnp6NjamqQX_ntbNrw6L7wfBx6EHimZUEqyl9Vis50wQtWEKcpSrq_QiEqpEyIVvR60kInM9O4W3YVwIIQJrdUI7aaVbxsf8RtEcLFqavxqAxS4FxZ_dsdYBWePgOddGMw52Nh5wGXj8bqNVe_hDZyaCHgLdajqPV6e7B7CPbop7THAw-WO0ff8_Wv2kazWi-Vsukocy3hMnMtFIRlQy3LJtNKuZKBlylNntaR5aYFJ7lKiC1ZYoXOhpCpEzjMtSG4ZH6Pn827rm58OQjSHpvN1_9IwqoRQGaG6T9FzyvkmBA-laX11sv7XUGIGgGYAaAaA5gKw7zydOxUA_OdVpjLJGf8D2mtsMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174479018</pqid></control><display><type>article</type><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</creator><creatorcontrib>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</creatorcontrib><description>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2712638</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airports ; Convolutional neural network (CNN) ; Detection ; Feature extraction ; GoogleNet-light feature (GoogleNet-LF) ; hard negative mining (HNM) ; Image detection ; Image segmentation ; Light ; Localization ; Localization method ; Multiscale analysis ; multiscale deep fusion feature ; Object detection ; Redundancy ; Remote sensing ; remote-sensing airport detection ; Roads ; Support vector machines</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1469-1473</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</citedby><cites>FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</cites><orcidid>0000-0002-8239-2268 ; 0000-0002-8233-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7979532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7979532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Gong, Yiping</creatorcontrib><creatorcontrib>Long, Yang</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Wang, Xiaoying</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</description><subject>Airports</subject><subject>Convolutional neural network (CNN)</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>GoogleNet-light feature (GoogleNet-LF)</subject><subject>hard negative mining (HNM)</subject><subject>Image detection</subject><subject>Image segmentation</subject><subject>Light</subject><subject>Localization</subject><subject>Localization method</subject><subject>Multiscale analysis</subject><subject>multiscale deep fusion feature</subject><subject>Object detection</subject><subject>Redundancy</subject><subject>Remote sensing</subject><subject>remote-sensing airport detection</subject><subject>Roads</subject><subject>Support vector machines</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zzya9nNPNwWSwKewupOnp6NjamqQX_ntbNrw6L7wfBx6EHimZUEqyl9Vis50wQtWEKcpSrq_QiEqpEyIVvR60kInM9O4W3YVwIIQJrdUI7aaVbxsf8RtEcLFqavxqAxS4FxZ_dsdYBWePgOddGMw52Nh5wGXj8bqNVe_hDZyaCHgLdajqPV6e7B7CPbop7THAw-WO0ff8_Wv2kazWi-Vsukocy3hMnMtFIRlQy3LJtNKuZKBlylNntaR5aYFJ7lKiC1ZYoXOhpCpEzjMtSG4ZH6Pn827rm58OQjSHpvN1_9IwqoRQGaG6T9FzyvkmBA-laX11sv7XUGIGgGYAaAaA5gKw7zydOxUA_OdVpjLJGf8D2mtsMA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xiao, Zhifeng</creator><creator>Gong, Yiping</creator><creator>Long, Yang</creator><creator>Li, Deren</creator><creator>Wang, Xiaoying</creator><creator>Liu, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8239-2268</orcidid><orcidid>https://orcid.org/0000-0002-8233-3778</orcidid></search><sort><creationdate>20170901</creationdate><title>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</title><author>Xiao, Zhifeng ; Gong, Yiping ; Long, Yang ; Li, Deren ; Wang, Xiaoying ; Liu, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ccb4d52e1a2b52878cf2e85636ca851bfae253c608d2da48b4757d4b39840ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airports</topic><topic>Convolutional neural network (CNN)</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>GoogleNet-light feature (GoogleNet-LF)</topic><topic>hard negative mining (HNM)</topic><topic>Image detection</topic><topic>Image segmentation</topic><topic>Light</topic><topic>Localization</topic><topic>Localization method</topic><topic>Multiscale analysis</topic><topic>multiscale deep fusion feature</topic><topic>Object detection</topic><topic>Redundancy</topic><topic>Remote sensing</topic><topic>remote-sensing airport detection</topic><topic>Roads</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhifeng</creatorcontrib><creatorcontrib>Gong, Yiping</creatorcontrib><creatorcontrib>Long, Yang</creatorcontrib><creatorcontrib>Li, Deren</creatorcontrib><creatorcontrib>Wang, Xiaoying</creatorcontrib><creatorcontrib>Liu, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Zhifeng</au><au>Gong, Yiping</au><au>Long, Yang</au><au>Li, Deren</au><au>Wang, Xiaoying</au><au>Liu, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>14</volume><issue>9</issue><spage>1469</spage><epage>1473</epage><pages>1469-1473</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Automatically detecting airports from remote sensing images has attracted significant attention due to its importance in both military and civilian fields. However, the diversity of illumination intensities and contextual information makes this task difficult. Moreover, auxiliary features both within and surrounding the regions of interest are usually ignored. To address these problems, we propose a novel method that uses a multiscale fusion feature to represent the complementary information of each region proposal, which is extracted by constructing a GoogleNet with a light feature module model that has an additional light fully connected layer. Then, the fusion feature is input to a support vector machine whose performance is enhanced using a hard negative mining method. Finally, a simplified localization method is applied to tackle the problem of box redundancy and to optimize the locations of airports. An experiment demonstrates that the fusion feature outperforms other features on airport detection tasks from remote sensing images containing complicated contextual information.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2712638</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8239-2268</orcidid><orcidid>https://orcid.org/0000-0002-8233-3778</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-09, Vol.14 (9), p.1469-1473 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_7979532 |
source | IEEE Electronic Library (IEL) |
subjects | Airports Convolutional neural network (CNN) Detection Feature extraction GoogleNet-light feature (GoogleNet-LF) hard negative mining (HNM) Image detection Image segmentation Light Localization Localization method Multiscale analysis multiscale deep fusion feature Object detection Redundancy Remote sensing remote-sensing airport detection Roads Support vector machines |
title | Airport Detection Based on a Multiscale Fusion Feature for Optical Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airport%20Detection%20Based%20on%20a%20Multiscale%20Fusion%20Feature%20for%20Optical%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xiao,%20Zhifeng&rft.date=2017-09-01&rft.volume=14&rft.issue=9&rft.spage=1469&rft.epage=1473&rft.pages=1469-1473&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2712638&rft_dat=%3Cproquest_RIE%3E2174479018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174479018&rft_id=info:pmid/&rft_ieee_id=7979532&rfr_iscdi=true |