Constrained Deep Weak Supervision for Histopathology Image Segmentation

In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2017-11, Vol.36 (11), p.2376-2388
Hauptverfasser: Jia, Zhipeng, Huang, Xingyi, Chang, Eric I-Chao, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2388
container_issue 11
container_start_page 2376
container_title IEEE transactions on medical imaging
container_volume 36
creator Jia, Zhipeng
Huang, Xingyi
Chang, Eric I-Chao
Xu, Yan
description In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.
doi_str_mv 10.1109/TMI.2017.2724070
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7971941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7971941</ieee_id><sourcerecordid>2174428991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</originalsourceid><addsrcrecordid>eNpdkE1P3DAQhi1EBVvKHQkJReqllywzjhPbR7TlYyWqHqBqb5aTHS-BTRzspBL_HqNdOHCaw_vMaN6HsROEOSLo8_tfyzkHlHMuuQAJe2yGZalyXop_-2wGXKocoOKH7GuMjwAoStAH7JCrSnMtccauF76PY7BtT6vsJ9GQ_SX7lN1NA4X_bWx9nzkfsps2jn6w44Pf-PVLtuzsmrI7WnfUj3ZM1Df2xdlNpOPdPGJ_ri7vFzf57e_r5eLiNm8KIce8AiUUr8tG1g0WqYPjhQCq0QrQ6FypSFbK6bq2qxWgVtpWUtTOqSr11VVxxH5s7w7BP08UR9O1saHNxvbkp2hQo9RVKZVM6PdP6KOfQp--MxylEFxpjYmCLdUEH2MgZ4bQdja8GATzJtkkyeZNstlJTitnu8NT3dHqY-HdagJOt0BLRB-xTJEWWLwCg6Z-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174428991</pqid></control><display><type>article</type><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</creator><creatorcontrib>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</creatorcontrib><description>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2724070</identifier><identifier>PMID: 28692971</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Cancer ; Colon - diagnostic imaging ; Colonic Neoplasms - diagnostic imaging ; Computed tomography ; Convolutional neural networks ; Databases, Factual ; fully convolutional networks ; Histocytochemistry - methods ; Histopathology ; histopathology image segmentation ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Learning ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; multiple instance learning ; Neural networks ; Neural Networks (Computer) ; Prediction algorithms ; State of the art ; Supervised learning ; Supervised Machine Learning ; Supervision ; Tissue Array Analysis ; Training ; Ultrasound ; weakly supervised learning</subject><ispartof>IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</citedby><cites>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</cites><orcidid>0000-0002-2636-7594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7971941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7971941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Zhipeng</creatorcontrib><creatorcontrib>Huang, Xingyi</creatorcontrib><creatorcontrib>Chang, Eric I-Chao</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Colon - diagnostic imaging</subject><subject>Colonic Neoplasms - diagnostic imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural networks</subject><subject>Databases, Factual</subject><subject>fully convolutional networks</subject><subject>Histocytochemistry - methods</subject><subject>Histopathology</subject><subject>histopathology image segmentation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>multiple instance learning</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Prediction algorithms</subject><subject>State of the art</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Supervision</subject><subject>Tissue Array Analysis</subject><subject>Training</subject><subject>Ultrasound</subject><subject>weakly supervised learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1P3DAQhi1EBVvKHQkJReqllywzjhPbR7TlYyWqHqBqb5aTHS-BTRzspBL_HqNdOHCaw_vMaN6HsROEOSLo8_tfyzkHlHMuuQAJe2yGZalyXop_-2wGXKocoOKH7GuMjwAoStAH7JCrSnMtccauF76PY7BtT6vsJ9GQ_SX7lN1NA4X_bWx9nzkfsps2jn6w44Pf-PVLtuzsmrI7WnfUj3ZM1Df2xdlNpOPdPGJ_ri7vFzf57e_r5eLiNm8KIce8AiUUr8tG1g0WqYPjhQCq0QrQ6FypSFbK6bq2qxWgVtpWUtTOqSr11VVxxH5s7w7BP08UR9O1saHNxvbkp2hQo9RVKZVM6PdP6KOfQp--MxylEFxpjYmCLdUEH2MgZ4bQdja8GATzJtkkyeZNstlJTitnu8NT3dHqY-HdagJOt0BLRB-xTJEWWLwCg6Z-9A</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Jia, Zhipeng</creator><creator>Huang, Xingyi</creator><creator>Chang, Eric I-Chao</creator><creator>Xu, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2636-7594</orcidid></search><sort><creationdate>20171101</creationdate><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><author>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Colon - diagnostic imaging</topic><topic>Colonic Neoplasms - diagnostic imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural networks</topic><topic>Databases, Factual</topic><topic>fully convolutional networks</topic><topic>Histocytochemistry - methods</topic><topic>Histopathology</topic><topic>histopathology image segmentation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>multiple instance learning</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Prediction algorithms</topic><topic>State of the art</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Supervision</topic><topic>Tissue Array Analysis</topic><topic>Training</topic><topic>Ultrasound</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhipeng</creatorcontrib><creatorcontrib>Huang, Xingyi</creatorcontrib><creatorcontrib>Chang, Eric I-Chao</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Zhipeng</au><au>Huang, Xingyi</au><au>Chang, Eric I-Chao</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Deep Weak Supervision for Histopathology Image Segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>36</volume><issue>11</issue><spage>2376</spage><epage>2388</epage><pages>2376-2388</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28692971</pmid><doi>10.1109/TMI.2017.2724070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2636-7594</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_7971941
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Biomedical imaging
Cancer
Colon - diagnostic imaging
Colonic Neoplasms - diagnostic imaging
Computed tomography
Convolutional neural networks
Databases, Factual
fully convolutional networks
Histocytochemistry - methods
Histopathology
histopathology image segmentation
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Learning
Machine learning
Magnetic resonance imaging
Medical imaging
multiple instance learning
Neural networks
Neural Networks (Computer)
Prediction algorithms
State of the art
Supervised learning
Supervised Machine Learning
Supervision
Tissue Array Analysis
Training
Ultrasound
weakly supervised learning
title Constrained Deep Weak Supervision for Histopathology Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Deep%20Weak%20Supervision%20for%20Histopathology%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jia,%20Zhipeng&rft.date=2017-11-01&rft.volume=36&rft.issue=11&rft.spage=2376&rft.epage=2388&rft.pages=2376-2388&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2724070&rft_dat=%3Cproquest_RIE%3E2174428991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174428991&rft_id=info:pmid/28692971&rft_ieee_id=7971941&rfr_iscdi=true