Constrained Deep Weak Supervision for Histopathology Image Segmentation
In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2017-11, Vol.36 (11), p.2376-2388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2388 |
---|---|
container_issue | 11 |
container_start_page | 2376 |
container_title | IEEE transactions on medical imaging |
container_volume | 36 |
creator | Jia, Zhipeng Huang, Xingyi Chang, Eric I-Chao Xu, Yan |
description | In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images. |
doi_str_mv | 10.1109/TMI.2017.2724070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7971941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7971941</ieee_id><sourcerecordid>2174428991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</originalsourceid><addsrcrecordid>eNpdkE1P3DAQhi1EBVvKHQkJReqllywzjhPbR7TlYyWqHqBqb5aTHS-BTRzspBL_HqNdOHCaw_vMaN6HsROEOSLo8_tfyzkHlHMuuQAJe2yGZalyXop_-2wGXKocoOKH7GuMjwAoStAH7JCrSnMtccauF76PY7BtT6vsJ9GQ_SX7lN1NA4X_bWx9nzkfsps2jn6w44Pf-PVLtuzsmrI7WnfUj3ZM1Df2xdlNpOPdPGJ_ri7vFzf57e_r5eLiNm8KIce8AiUUr8tG1g0WqYPjhQCq0QrQ6FypSFbK6bq2qxWgVtpWUtTOqSr11VVxxH5s7w7BP08UR9O1saHNxvbkp2hQo9RVKZVM6PdP6KOfQp--MxylEFxpjYmCLdUEH2MgZ4bQdja8GATzJtkkyeZNstlJTitnu8NT3dHqY-HdagJOt0BLRB-xTJEWWLwCg6Z-9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174428991</pqid></control><display><type>article</type><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</creator><creatorcontrib>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</creatorcontrib><description>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2017.2724070</identifier><identifier>PMID: 28692971</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Biomedical imaging ; Cancer ; Colon - diagnostic imaging ; Colonic Neoplasms - diagnostic imaging ; Computed tomography ; Convolutional neural networks ; Databases, Factual ; fully convolutional networks ; Histocytochemistry - methods ; Histopathology ; histopathology image segmentation ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Learning ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; multiple instance learning ; Neural networks ; Neural Networks (Computer) ; Prediction algorithms ; State of the art ; Supervised learning ; Supervised Machine Learning ; Supervision ; Tissue Array Analysis ; Training ; Ultrasound ; weakly supervised learning</subject><ispartof>IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</citedby><cites>FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</cites><orcidid>0000-0002-2636-7594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7971941$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7971941$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Zhipeng</creatorcontrib><creatorcontrib>Huang, Xingyi</creatorcontrib><creatorcontrib>Chang, Eric I-Chao</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Cancer</subject><subject>Colon - diagnostic imaging</subject><subject>Colonic Neoplasms - diagnostic imaging</subject><subject>Computed tomography</subject><subject>Convolutional neural networks</subject><subject>Databases, Factual</subject><subject>fully convolutional networks</subject><subject>Histocytochemistry - methods</subject><subject>Histopathology</subject><subject>histopathology image segmentation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>multiple instance learning</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Prediction algorithms</subject><subject>State of the art</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Supervision</subject><subject>Tissue Array Analysis</subject><subject>Training</subject><subject>Ultrasound</subject><subject>weakly supervised learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1P3DAQhi1EBVvKHQkJReqllywzjhPbR7TlYyWqHqBqb5aTHS-BTRzspBL_HqNdOHCaw_vMaN6HsROEOSLo8_tfyzkHlHMuuQAJe2yGZalyXop_-2wGXKocoOKH7GuMjwAoStAH7JCrSnMtccauF76PY7BtT6vsJ9GQ_SX7lN1NA4X_bWx9nzkfsps2jn6w44Pf-PVLtuzsmrI7WnfUj3ZM1Df2xdlNpOPdPGJ_ri7vFzf57e_r5eLiNm8KIce8AiUUr8tG1g0WqYPjhQCq0QrQ6FypSFbK6bq2qxWgVtpWUtTOqSr11VVxxH5s7w7BP08UR9O1saHNxvbkp2hQo9RVKZVM6PdP6KOfQp--MxylEFxpjYmCLdUEH2MgZ4bQdja8GATzJtkkyeZNstlJTitnu8NT3dHqY-HdagJOt0BLRB-xTJEWWLwCg6Z-9A</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Jia, Zhipeng</creator><creator>Huang, Xingyi</creator><creator>Chang, Eric I-Chao</creator><creator>Xu, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2636-7594</orcidid></search><sort><creationdate>20171101</creationdate><title>Constrained Deep Weak Supervision for Histopathology Image Segmentation</title><author>Jia, Zhipeng ; Huang, Xingyi ; Chang, Eric I-Chao ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-608482b5c7bc13110f2340eb1a4091ff58e768f9bbadd01989a674bff86109963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Cancer</topic><topic>Colon - diagnostic imaging</topic><topic>Colonic Neoplasms - diagnostic imaging</topic><topic>Computed tomography</topic><topic>Convolutional neural networks</topic><topic>Databases, Factual</topic><topic>fully convolutional networks</topic><topic>Histocytochemistry - methods</topic><topic>Histopathology</topic><topic>histopathology image segmentation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>multiple instance learning</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Prediction algorithms</topic><topic>State of the art</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Supervision</topic><topic>Tissue Array Analysis</topic><topic>Training</topic><topic>Ultrasound</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhipeng</creatorcontrib><creatorcontrib>Huang, Xingyi</creatorcontrib><creatorcontrib>Chang, Eric I-Chao</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Zhipeng</au><au>Huang, Xingyi</au><au>Chang, Eric I-Chao</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Deep Weak Supervision for Histopathology Image Segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>36</volume><issue>11</issue><spage>2376</spage><epage>2388</epage><pages>2376-2388</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28692971</pmid><doi>10.1109/TMI.2017.2724070</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2636-7594</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_7971941 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Biomedical imaging Cancer Colon - diagnostic imaging Colonic Neoplasms - diagnostic imaging Computed tomography Convolutional neural networks Databases, Factual fully convolutional networks Histocytochemistry - methods Histopathology histopathology image segmentation Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Learning Machine learning Magnetic resonance imaging Medical imaging multiple instance learning Neural networks Neural Networks (Computer) Prediction algorithms State of the art Supervised learning Supervised Machine Learning Supervision Tissue Array Analysis Training Ultrasound weakly supervised learning |
title | Constrained Deep Weak Supervision for Histopathology Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Deep%20Weak%20Supervision%20for%20Histopathology%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jia,%20Zhipeng&rft.date=2017-11-01&rft.volume=36&rft.issue=11&rft.spage=2376&rft.epage=2388&rft.pages=2376-2388&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2017.2724070&rft_dat=%3Cproquest_RIE%3E2174428991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174428991&rft_id=info:pmid/28692971&rft_ieee_id=7971941&rfr_iscdi=true |