An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark

With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453
Hauptverfasser: Ramirez-Gallego, Sergio, Mourino-Talin, Hector, Martinez-Rego, David, Bolon-Canedo, Veronica, Benitez, Jose Manuel, Alonso-Betanzos, Amparo, Herrera, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1453
container_issue 9
container_start_page 1441
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 48
creator Ramirez-Gallego, Sergio
Mourino-Talin, Hector
Martinez-Rego, David
Bolon-Canedo, Veronica
Benitez, Jose Manuel
Alonso-Betanzos, Amparo
Herrera, Francisco
description With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.
doi_str_mv 10.1109/TSMC.2017.2670926
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7970198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7970198</ieee_id><sourcerecordid>2117132006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiQT5AcZLE8-L03a33R4BRUkwHoB4bEqZyvKxXbtLDP_eRYinmck870zyEHLPoM8Y6Kf57H3U58BUn0sFmssr0uFM5gnngl__90zekl5dbwCA8VwKkB3yOSjppPQh7m1ThJLO1xjiMRnaGld0jLY5RKQz3KH7W4-j3eNPiFvaRuiw-KLPtrF0Ua4w0kFl3bqlKxu3d-TG212NvUvtksX4ZT56S6Yfr5PRYJo4rkWTpOg4cO-WqbTpqp281iB9nrkMveKAVrncp5nTMgVtM8W0W-aQpVZk4PNUdMnj-W4Vw_cB68ZswiGW7UvDGVNMcADZUuxMuRjqOqI3VSz2Nh4NA3NSaE4KzUmhuShsMw_nTIGI_7zSCpjOxS95pmuS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117132006</pqid></control><display><type>article</type><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</creator><creatorcontrib>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</creatorcontrib><description>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2670926</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apache spark ; Big Data ; Data management ; Data mining ; Datasets ; Distributed databases ; Feature extraction ; feature selection (FS) ; filtering methods ; high-dimensional ; Information theory ; Programming ; Sparks</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</citedby><cites>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</cites><orcidid>0000-0003-4804-5884 ; 0000-0003-0950-0012 ; 0000-0002-7283-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7970198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7970198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Gallego, Sergio</creatorcontrib><creatorcontrib>Mourino-Talin, Hector</creatorcontrib><creatorcontrib>Martinez-Rego, David</creatorcontrib><creatorcontrib>Bolon-Canedo, Veronica</creatorcontrib><creatorcontrib>Benitez, Jose Manuel</creatorcontrib><creatorcontrib>Alonso-Betanzos, Amparo</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</description><subject>Apache spark</subject><subject>Big Data</subject><subject>Data management</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distributed databases</subject><subject>Feature extraction</subject><subject>feature selection (FS)</subject><subject>filtering methods</subject><subject>high-dimensional</subject><subject>Information theory</subject><subject>Programming</subject><subject>Sparks</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiQT5AcZLE8-L03a33R4BRUkwHoB4bEqZyvKxXbtLDP_eRYinmck870zyEHLPoM8Y6Kf57H3U58BUn0sFmssr0uFM5gnngl__90zekl5dbwCA8VwKkB3yOSjppPQh7m1ThJLO1xjiMRnaGld0jLY5RKQz3KH7W4-j3eNPiFvaRuiw-KLPtrF0Ua4w0kFl3bqlKxu3d-TG212NvUvtksX4ZT56S6Yfr5PRYJo4rkWTpOg4cO-WqbTpqp281iB9nrkMveKAVrncp5nTMgVtM8W0W-aQpVZk4PNUdMnj-W4Vw_cB68ZswiGW7UvDGVNMcADZUuxMuRjqOqI3VSz2Nh4NA3NSaE4KzUmhuShsMw_nTIGI_7zSCpjOxS95pmuS</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Ramirez-Gallego, Sergio</creator><creator>Mourino-Talin, Hector</creator><creator>Martinez-Rego, David</creator><creator>Bolon-Canedo, Veronica</creator><creator>Benitez, Jose Manuel</creator><creator>Alonso-Betanzos, Amparo</creator><creator>Herrera, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4804-5884</orcidid><orcidid>https://orcid.org/0000-0003-0950-0012</orcidid><orcidid>https://orcid.org/0000-0002-7283-312X</orcidid></search><sort><creationdate>20180901</creationdate><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><author>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apache spark</topic><topic>Big Data</topic><topic>Data management</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distributed databases</topic><topic>Feature extraction</topic><topic>feature selection (FS)</topic><topic>filtering methods</topic><topic>high-dimensional</topic><topic>Information theory</topic><topic>Programming</topic><topic>Sparks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Gallego, Sergio</creatorcontrib><creatorcontrib>Mourino-Talin, Hector</creatorcontrib><creatorcontrib>Martinez-Rego, David</creatorcontrib><creatorcontrib>Bolon-Canedo, Veronica</creatorcontrib><creatorcontrib>Benitez, Jose Manuel</creatorcontrib><creatorcontrib>Alonso-Betanzos, Amparo</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Gallego, Sergio</au><au>Mourino-Talin, Hector</au><au>Martinez-Rego, David</au><au>Bolon-Canedo, Veronica</au><au>Benitez, Jose Manuel</au><au>Alonso-Betanzos, Amparo</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>9</issue><spage>1441</spage><epage>1453</epage><pages>1441-1453</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2670926</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4804-5884</orcidid><orcidid>https://orcid.org/0000-0003-0950-0012</orcidid><orcidid>https://orcid.org/0000-0002-7283-312X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453
issn 2168-2216
2168-2232
language eng
recordid cdi_ieee_primary_7970198
source IEEE Electronic Library (IEL)
subjects Apache spark
Big Data
Data management
Data mining
Datasets
Distributed databases
Feature extraction
feature selection (FS)
filtering methods
high-dimensional
Information theory
Programming
Sparks
title An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Information%20Theory-Based%20Feature%20Selection%20Framework%20for%20Big%20Data%20Under%20Apache%20Spark&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Ramirez-Gallego,%20Sergio&rft.date=2018-09-01&rft.volume=48&rft.issue=9&rft.spage=1441&rft.epage=1453&rft.pages=1441-1453&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2670926&rft_dat=%3Cproquest_RIE%3E2117132006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117132006&rft_id=info:pmid/&rft_ieee_id=7970198&rfr_iscdi=true