An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark
With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. W...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1453 |
---|---|
container_issue | 9 |
container_start_page | 1441 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 48 |
creator | Ramirez-Gallego, Sergio Mourino-Talin, Hector Martinez-Rego, David Bolon-Canedo, Veronica Benitez, Jose Manuel Alonso-Betanzos, Amparo Herrera, Francisco |
description | With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied. |
doi_str_mv | 10.1109/TSMC.2017.2670926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7970198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7970198</ieee_id><sourcerecordid>2117132006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiQT5AcZLE8-L03a33R4BRUkwHoB4bEqZyvKxXbtLDP_eRYinmck870zyEHLPoM8Y6Kf57H3U58BUn0sFmssr0uFM5gnngl__90zekl5dbwCA8VwKkB3yOSjppPQh7m1ThJLO1xjiMRnaGld0jLY5RKQz3KH7W4-j3eNPiFvaRuiw-KLPtrF0Ua4w0kFl3bqlKxu3d-TG212NvUvtksX4ZT56S6Yfr5PRYJo4rkWTpOg4cO-WqbTpqp281iB9nrkMveKAVrncp5nTMgVtM8W0W-aQpVZk4PNUdMnj-W4Vw_cB68ZswiGW7UvDGVNMcADZUuxMuRjqOqI3VSz2Nh4NA3NSaE4KzUmhuShsMw_nTIGI_7zSCpjOxS95pmuS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117132006</pqid></control><display><type>article</type><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</creator><creatorcontrib>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</creatorcontrib><description>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2670926</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apache spark ; Big Data ; Data management ; Data mining ; Datasets ; Distributed databases ; Feature extraction ; feature selection (FS) ; filtering methods ; high-dimensional ; Information theory ; Programming ; Sparks</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</citedby><cites>FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</cites><orcidid>0000-0003-4804-5884 ; 0000-0003-0950-0012 ; 0000-0002-7283-312X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7970198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7970198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Gallego, Sergio</creatorcontrib><creatorcontrib>Mourino-Talin, Hector</creatorcontrib><creatorcontrib>Martinez-Rego, David</creatorcontrib><creatorcontrib>Bolon-Canedo, Veronica</creatorcontrib><creatorcontrib>Benitez, Jose Manuel</creatorcontrib><creatorcontrib>Alonso-Betanzos, Amparo</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</description><subject>Apache spark</subject><subject>Big Data</subject><subject>Data management</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Distributed databases</subject><subject>Feature extraction</subject><subject>feature selection (FS)</subject><subject>filtering methods</subject><subject>high-dimensional</subject><subject>Information theory</subject><subject>Programming</subject><subject>Sparks</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiQT5AcZLE8-L03a33R4BRUkwHoB4bEqZyvKxXbtLDP_eRYinmck870zyEHLPoM8Y6Kf57H3U58BUn0sFmssr0uFM5gnngl__90zekl5dbwCA8VwKkB3yOSjppPQh7m1ThJLO1xjiMRnaGld0jLY5RKQz3KH7W4-j3eNPiFvaRuiw-KLPtrF0Ua4w0kFl3bqlKxu3d-TG212NvUvtksX4ZT56S6Yfr5PRYJo4rkWTpOg4cO-WqbTpqp281iB9nrkMveKAVrncp5nTMgVtM8W0W-aQpVZk4PNUdMnj-W4Vw_cB68ZswiGW7UvDGVNMcADZUuxMuRjqOqI3VSz2Nh4NA3NSaE4KzUmhuShsMw_nTIGI_7zSCpjOxS95pmuS</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Ramirez-Gallego, Sergio</creator><creator>Mourino-Talin, Hector</creator><creator>Martinez-Rego, David</creator><creator>Bolon-Canedo, Veronica</creator><creator>Benitez, Jose Manuel</creator><creator>Alonso-Betanzos, Amparo</creator><creator>Herrera, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4804-5884</orcidid><orcidid>https://orcid.org/0000-0003-0950-0012</orcidid><orcidid>https://orcid.org/0000-0002-7283-312X</orcidid></search><sort><creationdate>20180901</creationdate><title>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</title><author>Ramirez-Gallego, Sergio ; Mourino-Talin, Hector ; Martinez-Rego, David ; Bolon-Canedo, Veronica ; Benitez, Jose Manuel ; Alonso-Betanzos, Amparo ; Herrera, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4ec202fcb46a4d4ecf9906f85c5ef720ea7c8f45c96409a5719cb8054a350f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apache spark</topic><topic>Big Data</topic><topic>Data management</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Distributed databases</topic><topic>Feature extraction</topic><topic>feature selection (FS)</topic><topic>filtering methods</topic><topic>high-dimensional</topic><topic>Information theory</topic><topic>Programming</topic><topic>Sparks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Gallego, Sergio</creatorcontrib><creatorcontrib>Mourino-Talin, Hector</creatorcontrib><creatorcontrib>Martinez-Rego, David</creatorcontrib><creatorcontrib>Bolon-Canedo, Veronica</creatorcontrib><creatorcontrib>Benitez, Jose Manuel</creatorcontrib><creatorcontrib>Alonso-Betanzos, Amparo</creatorcontrib><creatorcontrib>Herrera, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Gallego, Sergio</au><au>Mourino-Talin, Hector</au><au>Martinez-Rego, David</au><au>Bolon-Canedo, Veronica</au><au>Benitez, Jose Manuel</au><au>Alonso-Betanzos, Amparo</au><au>Herrera, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>9</issue><spage>1441</spage><epage>1453</epage><pages>1441-1453</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>With the advent of extremely high dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the many techniques available, feature selection (FS) is of growing interest for its ability to identify both relevant features and frequently repeated instances in huge datasets. We aim to demonstrate that standard FS methods can be parallelized in big data platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic FS framework that includes a broad group of well-known information theory-based methods. Experimental results for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultrahigh-dimensional datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2670926</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4804-5884</orcidid><orcidid>https://orcid.org/0000-0003-0950-0012</orcidid><orcidid>https://orcid.org/0000-0002-7283-312X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2018-09, Vol.48 (9), p.1441-1453 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_ieee_primary_7970198 |
source | IEEE Electronic Library (IEL) |
subjects | Apache spark Big Data Data management Data mining Datasets Distributed databases Feature extraction feature selection (FS) filtering methods high-dimensional Information theory Programming Sparks |
title | An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Information%20Theory-Based%20Feature%20Selection%20Framework%20for%20Big%20Data%20Under%20Apache%20Spark&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Ramirez-Gallego,%20Sergio&rft.date=2018-09-01&rft.volume=48&rft.issue=9&rft.spage=1441&rft.epage=1453&rft.pages=1441-1453&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2670926&rft_dat=%3Cproquest_RIE%3E2117132006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117132006&rft_id=info:pmid/&rft_ieee_id=7970198&rfr_iscdi=true |