Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System

Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2017-09, Vol.17 (17), p.5705-5716
Hauptverfasser: Wang, Lingcao, Li, Kui, Zhang, Jun, Ding, Zhenxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5716
container_issue 17
container_start_page 5705
container_title IEEE sensors journal
container_volume 17
creator Wang, Lingcao
Li, Kui
Zhang, Jun
Ding, Zhenxing
description Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.
doi_str_mv 10.1109/JSEN.2017.2722544
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7967652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7967652</ieee_id><sourcerecordid>1927633207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYsoOKc_QLwJeN2ZjzZpLnVuc7IP2BS8K2mTzIyu2ZJssH9vS4dX7-FwznnhiaJHBAcIQf7yuR4tBhgiNsAM4zRJrqIeStMsRizJrltNYJwQ9nMb3Xm_hRBxlrJedFhbHcBYHKsA3o3Y1NYbD0QtwUqV9qTcGcxV-LUSvAmvJLA1mFupKjCVqg5Gm1IE05imBisbOj1eTsC0Vi4YUYGFOJlN56_PPqjdfXSjReXVw-X2o-_x6Gv4Ec-Wk-nwdRaXmJMQC51yRihNykxKjEuGCSMFo1AzJBPIOGa6hBwWBaSFTjLFodSEakwhxppnpB89d7t7Zw9H5UO-tUdXNy9z1JQpIRiyJoW6VOms907pfO_MTrhzjmDeks1bsnlLNr-QbTpPXccopf7zjFNGU0z-APLUdFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927633207</pqid></control><display><type>article</type><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</creator><creatorcontrib>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</creatorcontrib><description>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2722544</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Azimuth ; calibration ; Fault diagnosis ; Fault diagnosis and recovery ; Inertial navigation ; least squares algorithm ; Navigation systems ; optical parameter identification ; Parameter estimation ; Parameter identification ; Recovering ; Recovery ; rotation inertial navigation system ; rotation strategy ; Sensors ; Ships ; Velocity errors ; Workload</subject><ispartof>IEEE sensors journal, 2017-09, Vol.17 (17), p.5705-5716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</citedby><cites>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7967652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7967652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lingcao</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Ding, Zhenxing</creatorcontrib><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</description><subject>Accelerometers</subject><subject>Azimuth</subject><subject>calibration</subject><subject>Fault diagnosis</subject><subject>Fault diagnosis and recovery</subject><subject>Inertial navigation</subject><subject>least squares algorithm</subject><subject>Navigation systems</subject><subject>optical parameter identification</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Recovering</subject><subject>Recovery</subject><subject>rotation inertial navigation system</subject><subject>rotation strategy</subject><subject>Sensors</subject><subject>Ships</subject><subject>Velocity errors</subject><subject>Workload</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYsoOKc_QLwJeN2ZjzZpLnVuc7IP2BS8K2mTzIyu2ZJssH9vS4dX7-FwznnhiaJHBAcIQf7yuR4tBhgiNsAM4zRJrqIeStMsRizJrltNYJwQ9nMb3Xm_hRBxlrJedFhbHcBYHKsA3o3Y1NYbD0QtwUqV9qTcGcxV-LUSvAmvJLA1mFupKjCVqg5Gm1IE05imBisbOj1eTsC0Vi4YUYGFOJlN56_PPqjdfXSjReXVw-X2o-_x6Gv4Ec-Wk-nwdRaXmJMQC51yRihNykxKjEuGCSMFo1AzJBPIOGa6hBwWBaSFTjLFodSEakwhxppnpB89d7t7Zw9H5UO-tUdXNy9z1JQpIRiyJoW6VOms907pfO_MTrhzjmDeks1bsnlLNr-QbTpPXccopf7zjFNGU0z-APLUdFk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Wang, Lingcao</creator><creator>Li, Kui</creator><creator>Zhang, Jun</creator><creator>Ding, Zhenxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><author>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerometers</topic><topic>Azimuth</topic><topic>calibration</topic><topic>Fault diagnosis</topic><topic>Fault diagnosis and recovery</topic><topic>Inertial navigation</topic><topic>least squares algorithm</topic><topic>Navigation systems</topic><topic>optical parameter identification</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Recovering</topic><topic>Recovery</topic><topic>rotation inertial navigation system</topic><topic>rotation strategy</topic><topic>Sensors</topic><topic>Ships</topic><topic>Velocity errors</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lingcao</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Ding, Zhenxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lingcao</au><au>Li, Kui</au><au>Zhang, Jun</au><au>Ding, Zhenxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>17</volume><issue>17</issue><spage>5705</spage><epage>5716</epage><pages>5705-5716</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2722544</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2017-09, Vol.17 (17), p.5705-5716
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_7967652
source IEEE Electronic Library (IEL)
subjects Accelerometers
Azimuth
calibration
Fault diagnosis
Fault diagnosis and recovery
Inertial navigation
least squares algorithm
Navigation systems
optical parameter identification
Parameter estimation
Parameter identification
Recovering
Recovery
rotation inertial navigation system
rotation strategy
Sensors
Ships
Velocity errors
Workload
title Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Fault%20Diagnosis%20and%20Recovery%20Method%20Based%20on%20Model%20Identification%20in%20Rotation%20FOG%20Inertial%20Navigation%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Lingcao&rft.date=2017-09-01&rft.volume=17&rft.issue=17&rft.spage=5705&rft.epage=5716&rft.pages=5705-5716&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2722544&rft_dat=%3Cproquest_RIE%3E1927633207%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927633207&rft_id=info:pmid/&rft_ieee_id=7967652&rfr_iscdi=true