Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System
Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are requi...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2017-09, Vol.17 (17), p.5705-5716 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5716 |
---|---|
container_issue | 17 |
container_start_page | 5705 |
container_title | IEEE sensors journal |
container_volume | 17 |
creator | Wang, Lingcao Li, Kui Zhang, Jun Ding, Zhenxing |
description | Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery. |
doi_str_mv | 10.1109/JSEN.2017.2722544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7967652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7967652</ieee_id><sourcerecordid>1927633207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYsoOKc_QLwJeN2ZjzZpLnVuc7IP2BS8K2mTzIyu2ZJssH9vS4dX7-FwznnhiaJHBAcIQf7yuR4tBhgiNsAM4zRJrqIeStMsRizJrltNYJwQ9nMb3Xm_hRBxlrJedFhbHcBYHKsA3o3Y1NYbD0QtwUqV9qTcGcxV-LUSvAmvJLA1mFupKjCVqg5Gm1IE05imBisbOj1eTsC0Vi4YUYGFOJlN56_PPqjdfXSjReXVw-X2o-_x6Gv4Ec-Wk-nwdRaXmJMQC51yRihNykxKjEuGCSMFo1AzJBPIOGa6hBwWBaSFTjLFodSEakwhxppnpB89d7t7Zw9H5UO-tUdXNy9z1JQpIRiyJoW6VOms907pfO_MTrhzjmDeks1bsnlLNr-QbTpPXccopf7zjFNGU0z-APLUdFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927633207</pqid></control><display><type>article</type><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</creator><creatorcontrib>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</creatorcontrib><description>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2722544</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Azimuth ; calibration ; Fault diagnosis ; Fault diagnosis and recovery ; Inertial navigation ; least squares algorithm ; Navigation systems ; optical parameter identification ; Parameter estimation ; Parameter identification ; Recovering ; Recovery ; rotation inertial navigation system ; rotation strategy ; Sensors ; Ships ; Velocity errors ; Workload</subject><ispartof>IEEE sensors journal, 2017-09, Vol.17 (17), p.5705-5716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</citedby><cites>FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7967652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7967652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lingcao</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Ding, Zhenxing</creatorcontrib><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</description><subject>Accelerometers</subject><subject>Azimuth</subject><subject>calibration</subject><subject>Fault diagnosis</subject><subject>Fault diagnosis and recovery</subject><subject>Inertial navigation</subject><subject>least squares algorithm</subject><subject>Navigation systems</subject><subject>optical parameter identification</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Recovering</subject><subject>Recovery</subject><subject>rotation inertial navigation system</subject><subject>rotation strategy</subject><subject>Sensors</subject><subject>Ships</subject><subject>Velocity errors</subject><subject>Workload</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYsoOKc_QLwJeN2ZjzZpLnVuc7IP2BS8K2mTzIyu2ZJssH9vS4dX7-FwznnhiaJHBAcIQf7yuR4tBhgiNsAM4zRJrqIeStMsRizJrltNYJwQ9nMb3Xm_hRBxlrJedFhbHcBYHKsA3o3Y1NYbD0QtwUqV9qTcGcxV-LUSvAmvJLA1mFupKjCVqg5Gm1IE05imBisbOj1eTsC0Vi4YUYGFOJlN56_PPqjdfXSjReXVw-X2o-_x6Gv4Ec-Wk-nwdRaXmJMQC51yRihNykxKjEuGCSMFo1AzJBPIOGa6hBwWBaSFTjLFodSEakwhxppnpB89d7t7Zw9H5UO-tUdXNy9z1JQpIRiyJoW6VOms907pfO_MTrhzjmDeks1bsnlLNr-QbTpPXccopf7zjFNGU0z-APLUdFk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Wang, Lingcao</creator><creator>Li, Kui</creator><creator>Zhang, Jun</creator><creator>Ding, Zhenxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</title><author>Wang, Lingcao ; Li, Kui ; Zhang, Jun ; Ding, Zhenxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af5973664c8dd22c72373b760f71d407927fc090bb06bf48e90df36f26022f983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accelerometers</topic><topic>Azimuth</topic><topic>calibration</topic><topic>Fault diagnosis</topic><topic>Fault diagnosis and recovery</topic><topic>Inertial navigation</topic><topic>least squares algorithm</topic><topic>Navigation systems</topic><topic>optical parameter identification</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Recovering</topic><topic>Recovery</topic><topic>rotation inertial navigation system</topic><topic>rotation strategy</topic><topic>Sensors</topic><topic>Ships</topic><topic>Velocity errors</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lingcao</creatorcontrib><creatorcontrib>Li, Kui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Ding, Zhenxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lingcao</au><au>Li, Kui</au><au>Zhang, Jun</au><au>Ding, Zhenxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>17</volume><issue>17</issue><spage>5705</spage><epage>5716</epage><pages>5705-5716</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Inertial navigation system (INS) is a critical and essential equipment for vehicles, ships, and aircrafts. However, as the soft fault parameters of the INS vary with time, internal device operations and external environmental disturbances, periodic diagnosis and recovery of the soft faults are required to satisfy their accuracy requirements. The deployment of human experts for fault diagnosis and recovery in INS would mean low efficiency and heavy workload, as well as low-speed operations. In this paper, a method for automatic diagnosis and recovery of the soft faults, based on the rotation INS (RINS) error model is proposed. This method is implemented by means of a self-rotation mechanism, driven by a specially designated rotation strategy. On the basis of the attitude and change rate of velocity errors in stationary base navigation, a least squares algorithm is used for optimal soft fault parameter identification. Experimental results from a real dual-axis RINS demonstrate the effectiveness of the method in automatically, accurately, and quickly diagnosing and recovering soft faults, and further improving the accuracy of INS, after recovery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2722544</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2017-09, Vol.17 (17), p.5705-5716 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_7967652 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Azimuth calibration Fault diagnosis Fault diagnosis and recovery Inertial navigation least squares algorithm Navigation systems optical parameter identification Parameter estimation Parameter identification Recovering Recovery rotation inertial navigation system rotation strategy Sensors Ships Velocity errors Workload |
title | Soft Fault Diagnosis and Recovery Method Based on Model Identification in Rotation FOG Inertial Navigation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Fault%20Diagnosis%20and%20Recovery%20Method%20Based%20on%20Model%20Identification%20in%20Rotation%20FOG%20Inertial%20Navigation%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Lingcao&rft.date=2017-09-01&rft.volume=17&rft.issue=17&rft.spage=5705&rft.epage=5716&rft.pages=5705-5716&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2722544&rft_dat=%3Cproquest_RIE%3E1927633207%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927633207&rft_id=info:pmid/&rft_ieee_id=7967652&rfr_iscdi=true |