Towards Prioritizing Documentation Effort

Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2018-09, Vol.44 (9), p.897-913
Hauptverfasser: McBurney, Paul W., Jiang, Siyuan, Kessentini, Marouane, Kraft, Nicholas A., Armaly, Ameer, Mkaouer, Mohamed Wiem, McMillan, Collin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 913
container_issue 9
container_start_page 897
container_title IEEE transactions on software engineering
container_volume 44
creator McBurney, Paul W.
Jiang, Siyuan
Kessentini, Marouane
Kraft, Nicholas A.
Armaly, Ameer
Mkaouer, Mohamed Wiem
McMillan, Collin
description Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.
doi_str_mv 10.1109/TSE.2017.2716950
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7953505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953505</ieee_id><sourcerecordid>2117167533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoOFb3gpsBVy6m3iRzJ8lSan1AQcG6Dun0RlLspCZTRH-9U1pcnc15cD7GLjmMOQdzO3-bjgVwNRaKNwbhiBXcSFNJFHDMCgCjK0RtTtlZzisAQKWwYDfz-O3SMpevKcQU-vAbuo_yPrbbNXW960Psyqn3MfXn7MS7z0wXBx2x94fpfPJUzV4enyd3s6qVUvbVotbUNNq7GlBrIL_gjSKpde2XEh0QtADLutWaO_I1ajJSLKQD4QUXVMsRu973blL82lLu7SpuUzdMWsH5cE7hMDRisHe1KeacyNtNCmuXfiwHuwNiByB2B8QegAyRq30kENG_XRmUCCj_AOHQWsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117167533</pqid></control><display><type>article</type><title>Towards Prioritizing Documentation Effort</title><source>IEEE Electronic Library (IEL)</source><creator>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</creator><creatorcontrib>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</creatorcontrib><description>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2017.2716950</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Code documentation ; Documentation ; Gold ; Java ; Libraries ; Neural networks ; Open source software ; Performance evaluation ; program comprehension ; Programmers ; Programming ; Software ; software maintenance ; Source code ; Text analysis</subject><ispartof>IEEE transactions on software engineering, 2018-09, Vol.44 (9), p.897-913</ispartof><rights>Copyright IEEE Computer Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</citedby><cites>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</cites><orcidid>0000-0002-7296-4779 ; 0000-0002-0053-3443 ; 0000-0002-0684-789X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McBurney, Paul W.</creatorcontrib><creatorcontrib>Jiang, Siyuan</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Kraft, Nicholas A.</creatorcontrib><creatorcontrib>Armaly, Ameer</creatorcontrib><creatorcontrib>Mkaouer, Mohamed Wiem</creatorcontrib><creatorcontrib>McMillan, Collin</creatorcontrib><title>Towards Prioritizing Documentation Effort</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</description><subject>Code documentation</subject><subject>Documentation</subject><subject>Gold</subject><subject>Java</subject><subject>Libraries</subject><subject>Neural networks</subject><subject>Open source software</subject><subject>Performance evaluation</subject><subject>program comprehension</subject><subject>Programmers</subject><subject>Programming</subject><subject>Software</subject><subject>software maintenance</subject><subject>Source code</subject><subject>Text analysis</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoOFb3gpsBVy6m3iRzJ8lSan1AQcG6Dun0RlLspCZTRH-9U1pcnc15cD7GLjmMOQdzO3-bjgVwNRaKNwbhiBXcSFNJFHDMCgCjK0RtTtlZzisAQKWwYDfz-O3SMpevKcQU-vAbuo_yPrbbNXW960Psyqn3MfXn7MS7z0wXBx2x94fpfPJUzV4enyd3s6qVUvbVotbUNNq7GlBrIL_gjSKpde2XEh0QtADLutWaO_I1ajJSLKQD4QUXVMsRu973blL82lLu7SpuUzdMWsH5cE7hMDRisHe1KeacyNtNCmuXfiwHuwNiByB2B8QegAyRq30kENG_XRmUCCj_AOHQWsQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>McBurney, Paul W.</creator><creator>Jiang, Siyuan</creator><creator>Kessentini, Marouane</creator><creator>Kraft, Nicholas A.</creator><creator>Armaly, Ameer</creator><creator>Mkaouer, Mohamed Wiem</creator><creator>McMillan, Collin</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7296-4779</orcidid><orcidid>https://orcid.org/0000-0002-0053-3443</orcidid><orcidid>https://orcid.org/0000-0002-0684-789X</orcidid></search><sort><creationdate>20180901</creationdate><title>Towards Prioritizing Documentation Effort</title><author>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Code documentation</topic><topic>Documentation</topic><topic>Gold</topic><topic>Java</topic><topic>Libraries</topic><topic>Neural networks</topic><topic>Open source software</topic><topic>Performance evaluation</topic><topic>program comprehension</topic><topic>Programmers</topic><topic>Programming</topic><topic>Software</topic><topic>software maintenance</topic><topic>Source code</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBurney, Paul W.</creatorcontrib><creatorcontrib>Jiang, Siyuan</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Kraft, Nicholas A.</creatorcontrib><creatorcontrib>Armaly, Ameer</creatorcontrib><creatorcontrib>Mkaouer, Mohamed Wiem</creatorcontrib><creatorcontrib>McMillan, Collin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McBurney, Paul W.</au><au>Jiang, Siyuan</au><au>Kessentini, Marouane</au><au>Kraft, Nicholas A.</au><au>Armaly, Ameer</au><au>Mkaouer, Mohamed Wiem</au><au>McMillan, Collin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Prioritizing Documentation Effort</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>44</volume><issue>9</issue><spage>897</spage><epage>913</epage><pages>897-913</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2017.2716950</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7296-4779</orcidid><orcidid>https://orcid.org/0000-0002-0053-3443</orcidid><orcidid>https://orcid.org/0000-0002-0684-789X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2018-09, Vol.44 (9), p.897-913
issn 0098-5589
1939-3520
language eng
recordid cdi_ieee_primary_7953505
source IEEE Electronic Library (IEL)
subjects Code documentation
Documentation
Gold
Java
Libraries
Neural networks
Open source software
Performance evaluation
program comprehension
Programmers
Programming
Software
software maintenance
Source code
Text analysis
title Towards Prioritizing Documentation Effort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Prioritizing%20Documentation%20Effort&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=McBurney,%20Paul%20W.&rft.date=2018-09-01&rft.volume=44&rft.issue=9&rft.spage=897&rft.epage=913&rft.pages=897-913&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2017.2716950&rft_dat=%3Cproquest_RIE%3E2117167533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117167533&rft_id=info:pmid/&rft_ieee_id=7953505&rfr_iscdi=true