Towards Prioritizing Documentation Effort
Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of auto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 2018-09, Vol.44 (9), p.897-913 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 913 |
---|---|
container_issue | 9 |
container_start_page | 897 |
container_title | IEEE transactions on software engineering |
container_volume | 44 |
creator | McBurney, Paul W. Jiang, Siyuan Kessentini, Marouane Kraft, Nicholas A. Armaly, Ameer Mkaouer, Mohamed Wiem McMillan, Collin |
description | Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority. |
doi_str_mv | 10.1109/TSE.2017.2716950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7953505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953505</ieee_id><sourcerecordid>2117167533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoOFb3gpsBVy6m3iRzJ8lSan1AQcG6Dun0RlLspCZTRH-9U1pcnc15cD7GLjmMOQdzO3-bjgVwNRaKNwbhiBXcSFNJFHDMCgCjK0RtTtlZzisAQKWwYDfz-O3SMpevKcQU-vAbuo_yPrbbNXW960Psyqn3MfXn7MS7z0wXBx2x94fpfPJUzV4enyd3s6qVUvbVotbUNNq7GlBrIL_gjSKpde2XEh0QtADLutWaO_I1ajJSLKQD4QUXVMsRu973blL82lLu7SpuUzdMWsH5cE7hMDRisHe1KeacyNtNCmuXfiwHuwNiByB2B8QegAyRq30kENG_XRmUCCj_AOHQWsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117167533</pqid></control><display><type>article</type><title>Towards Prioritizing Documentation Effort</title><source>IEEE Electronic Library (IEL)</source><creator>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</creator><creatorcontrib>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</creatorcontrib><description>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2017.2716950</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Code documentation ; Documentation ; Gold ; Java ; Libraries ; Neural networks ; Open source software ; Performance evaluation ; program comprehension ; Programmers ; Programming ; Software ; software maintenance ; Source code ; Text analysis</subject><ispartof>IEEE transactions on software engineering, 2018-09, Vol.44 (9), p.897-913</ispartof><rights>Copyright IEEE Computer Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</citedby><cites>FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</cites><orcidid>0000-0002-7296-4779 ; 0000-0002-0053-3443 ; 0000-0002-0684-789X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McBurney, Paul W.</creatorcontrib><creatorcontrib>Jiang, Siyuan</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Kraft, Nicholas A.</creatorcontrib><creatorcontrib>Armaly, Ameer</creatorcontrib><creatorcontrib>Mkaouer, Mohamed Wiem</creatorcontrib><creatorcontrib>McMillan, Collin</creatorcontrib><title>Towards Prioritizing Documentation Effort</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</description><subject>Code documentation</subject><subject>Documentation</subject><subject>Gold</subject><subject>Java</subject><subject>Libraries</subject><subject>Neural networks</subject><subject>Open source software</subject><subject>Performance evaluation</subject><subject>program comprehension</subject><subject>Programmers</subject><subject>Programming</subject><subject>Software</subject><subject>software maintenance</subject><subject>Source code</subject><subject>Text analysis</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoOFb3gpsBVy6m3iRzJ8lSan1AQcG6Dun0RlLspCZTRH-9U1pcnc15cD7GLjmMOQdzO3-bjgVwNRaKNwbhiBXcSFNJFHDMCgCjK0RtTtlZzisAQKWwYDfz-O3SMpevKcQU-vAbuo_yPrbbNXW960Psyqn3MfXn7MS7z0wXBx2x94fpfPJUzV4enyd3s6qVUvbVotbUNNq7GlBrIL_gjSKpde2XEh0QtADLutWaO_I1ajJSLKQD4QUXVMsRu973blL82lLu7SpuUzdMWsH5cE7hMDRisHe1KeacyNtNCmuXfiwHuwNiByB2B8QegAyRq30kENG_XRmUCCj_AOHQWsQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>McBurney, Paul W.</creator><creator>Jiang, Siyuan</creator><creator>Kessentini, Marouane</creator><creator>Kraft, Nicholas A.</creator><creator>Armaly, Ameer</creator><creator>Mkaouer, Mohamed Wiem</creator><creator>McMillan, Collin</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7296-4779</orcidid><orcidid>https://orcid.org/0000-0002-0053-3443</orcidid><orcidid>https://orcid.org/0000-0002-0684-789X</orcidid></search><sort><creationdate>20180901</creationdate><title>Towards Prioritizing Documentation Effort</title><author>McBurney, Paul W. ; Jiang, Siyuan ; Kessentini, Marouane ; Kraft, Nicholas A. ; Armaly, Ameer ; Mkaouer, Mohamed Wiem ; McMillan, Collin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-b48e668fa405880efb167e3884fd35a0e0c00d4c881aef458e932b3a02f212e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Code documentation</topic><topic>Documentation</topic><topic>Gold</topic><topic>Java</topic><topic>Libraries</topic><topic>Neural networks</topic><topic>Open source software</topic><topic>Performance evaluation</topic><topic>program comprehension</topic><topic>Programmers</topic><topic>Programming</topic><topic>Software</topic><topic>software maintenance</topic><topic>Source code</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBurney, Paul W.</creatorcontrib><creatorcontrib>Jiang, Siyuan</creatorcontrib><creatorcontrib>Kessentini, Marouane</creatorcontrib><creatorcontrib>Kraft, Nicholas A.</creatorcontrib><creatorcontrib>Armaly, Ameer</creatorcontrib><creatorcontrib>Mkaouer, Mohamed Wiem</creatorcontrib><creatorcontrib>McMillan, Collin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McBurney, Paul W.</au><au>Jiang, Siyuan</au><au>Kessentini, Marouane</au><au>Kraft, Nicholas A.</au><au>Armaly, Ameer</au><au>Mkaouer, Mohamed Wiem</au><au>McMillan, Collin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Prioritizing Documentation Effort</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>44</volume><issue>9</issue><spage>897</spage><epage>913</epage><pages>897-913</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Programmers need documentation to comprehend software, but they often lack the time to write it. Thus, programmers must prioritize their documentation effort to ensure that sections of code important to program comprehension are thoroughly explained. In this paper, we explore the possibility of automatically prioritizing documentation effort. We performed two user studies to evaluate the effectiveness of static source code attributes and textual analysis of source code towards prioritizing documentation effort. The first study used open-source API Libraries while the second study was conducted using closed-source industrial software from ABB. Our findings suggest that static source code attributes are poor predictors of documentation effort priority, whereas textual analysis of source code consistently performed well as a predictor of documentation effort priority.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2017.2716950</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7296-4779</orcidid><orcidid>https://orcid.org/0000-0002-0053-3443</orcidid><orcidid>https://orcid.org/0000-0002-0684-789X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2018-09, Vol.44 (9), p.897-913 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_ieee_primary_7953505 |
source | IEEE Electronic Library (IEL) |
subjects | Code documentation Documentation Gold Java Libraries Neural networks Open source software Performance evaluation program comprehension Programmers Programming Software software maintenance Source code Text analysis |
title | Towards Prioritizing Documentation Effort |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Prioritizing%20Documentation%20Effort&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=McBurney,%20Paul%20W.&rft.date=2018-09-01&rft.volume=44&rft.issue=9&rft.spage=897&rft.epage=913&rft.pages=897-913&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2017.2716950&rft_dat=%3Cproquest_RIE%3E2117167533%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117167533&rft_id=info:pmid/&rft_ieee_id=7953505&rfr_iscdi=true |