A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements

The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2017-09, Vol.66 (9), p.2437-2447
Hauptverfasser: Capelli, Francesca, Riba, Jordi-Roger, Ruperez, Elisa, Sanllehi, Josep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2447
container_issue 9
container_start_page 2437
container_title IEEE transactions on instrumentation and measurement
container_volume 66
creator Capelli, Francesca
Riba, Jordi-Roger
Ruperez, Elisa
Sanllehi, Josep
description The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring contact stability and extended service life. This paper develops a genetic algorithm (GA) approach to determine the optimal values of the parameters of a fractal model of rough surfaces to accurately predict the measured value of the surface roughness. This GA-optimized fractal model provides an accurate prediction of the contact resistance when the electrical and mechanical properties of the contacting materials, surface roughness, contact pressure, and apparent area of contact are known. Experimental results corroborate the usefulness and accuracy of the proposed approach. Although the proposed model has been validated for substation connectors, it can also be applied in the design stage of many other electrical equipments.
doi_str_mv 10.1109/TIM.2017.2707938
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7945532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7945532</ieee_id><sourcerecordid>2221340875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-964ac690f83b5ad3cf0e7daf69a5fcd2afd8a8157a9427d7218b3f5ccec529343</originalsourceid><addsrcrecordid>eNpFkUtLAzEURoMoWB97wU3A9dQ8JpPJshRfYFF8rEPM3NhIZ1KTjKC_3pQWXVwuH3zncuEgdEbJlFKiLl_uFlNGqJwySaTi7R6aUCFkpZqG7aMJIbStVC2aQ3SU0gchRDa1nKCvGb6BAbK31Wz1HqLPy756WGff-x_o8HU0NpsVXoQOVjgH_Bih8zbjvAQ8D0PKsSQfBvwEyadsBgsFCj1-HqMzJTyF8X05QEp4ASaNEXoYcjpBB86sEpzu9jF6vb56md9W9w83d_PZfWW5FLk8XxvbKOJa_iZMx60jIDvjGmWEsx0zrmtNS4U0qmayk4y2b9wJa8EKpnjNjxHd3rVptDqChWhN1sH4_7AZRiTTTDFGZWEutsw6hs8RUtYfYYxDeVOzUuA1aaUoLbK7HENKEZxeR9-b-K0p0RsjuhjRGyN6Z6Qg51vEA8BfXRYrgjP-C2fUiPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221340875</pqid></control><display><type>article</type><title>A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Capelli, Francesca ; Riba, Jordi-Roger ; Ruperez, Elisa ; Sanllehi, Josep</creator><creatorcontrib>Capelli, Francesca ; Riba, Jordi-Roger ; Ruperez, Elisa ; Sanllehi, Josep</creatorcontrib><description>The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring contact stability and extended service life. This paper develops a genetic algorithm (GA) approach to determine the optimal values of the parameters of a fractal model of rough surfaces to accurately predict the measured value of the surface roughness. This GA-optimized fractal model provides an accurate prediction of the contact resistance when the electrical and mechanical properties of the contacting materials, surface roughness, contact pressure, and apparent area of contact are known. Experimental results corroborate the usefulness and accuracy of the proposed approach. Although the proposed model has been validated for substation connectors, it can also be applied in the design stage of many other electrical equipments.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2017.2707938</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorismes genètics ; Connectors ; Connectors elèctrics ; Contact pressure ; Contact resistance ; Control elèctric ; Electric connectors ; Electric contacts ; Electric equipment ; Electrical resistance ; Enginyeria elèctrica ; Fractal models ; Fractals ; Genetic algorithms ; genetic algorithms (GAs) ; Lògica matemàtica ; Maquinària i aparells elèctrics ; Matemàtiques i estadística ; Materials ; Mechanical properties ; Resistència de materials ; Rough surfaces ; Service life ; Substations ; Surface resistance ; Surface roughness ; Testing ; Thermal resistance ; Thermodynamic properties ; Àrees temàtiques de la UPC</subject><ispartof>IEEE transactions on instrumentation and measurement, 2017-09, Vol.66 (9), p.2437-2447</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-964ac690f83b5ad3cf0e7daf69a5fcd2afd8a8157a9427d7218b3f5ccec529343</citedby><cites>FETCH-LOGICAL-c375t-964ac690f83b5ad3cf0e7daf69a5fcd2afd8a8157a9427d7218b3f5ccec529343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7945532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,26951,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7945532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Capelli, Francesca</creatorcontrib><creatorcontrib>Riba, Jordi-Roger</creatorcontrib><creatorcontrib>Ruperez, Elisa</creatorcontrib><creatorcontrib>Sanllehi, Josep</creatorcontrib><title>A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring contact stability and extended service life. This paper develops a genetic algorithm (GA) approach to determine the optimal values of the parameters of a fractal model of rough surfaces to accurately predict the measured value of the surface roughness. This GA-optimized fractal model provides an accurate prediction of the contact resistance when the electrical and mechanical properties of the contacting materials, surface roughness, contact pressure, and apparent area of contact are known. Experimental results corroborate the usefulness and accuracy of the proposed approach. Although the proposed model has been validated for substation connectors, it can also be applied in the design stage of many other electrical equipments.</description><subject>Algorismes genètics</subject><subject>Connectors</subject><subject>Connectors elèctrics</subject><subject>Contact pressure</subject><subject>Contact resistance</subject><subject>Control elèctric</subject><subject>Electric connectors</subject><subject>Electric contacts</subject><subject>Electric equipment</subject><subject>Electrical resistance</subject><subject>Enginyeria elèctrica</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Genetic algorithms</subject><subject>genetic algorithms (GAs)</subject><subject>Lògica matemàtica</subject><subject>Maquinària i aparells elèctrics</subject><subject>Matemàtiques i estadística</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Resistència de materials</subject><subject>Rough surfaces</subject><subject>Service life</subject><subject>Substations</subject><subject>Surface resistance</subject><subject>Surface roughness</subject><subject>Testing</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Àrees temàtiques de la UPC</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkUtLAzEURoMoWB97wU3A9dQ8JpPJshRfYFF8rEPM3NhIZ1KTjKC_3pQWXVwuH3zncuEgdEbJlFKiLl_uFlNGqJwySaTi7R6aUCFkpZqG7aMJIbStVC2aQ3SU0gchRDa1nKCvGb6BAbK31Wz1HqLPy756WGff-x_o8HU0NpsVXoQOVjgH_Bih8zbjvAQ8D0PKsSQfBvwEyadsBgsFCj1-HqMzJTyF8X05QEp4ASaNEXoYcjpBB86sEpzu9jF6vb56md9W9w83d_PZfWW5FLk8XxvbKOJa_iZMx60jIDvjGmWEsx0zrmtNS4U0qmayk4y2b9wJa8EKpnjNjxHd3rVptDqChWhN1sH4_7AZRiTTTDFGZWEutsw6hs8RUtYfYYxDeVOzUuA1aaUoLbK7HENKEZxeR9-b-K0p0RsjuhjRGyN6Z6Qg51vEA8BfXRYrgjP-C2fUiPw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Capelli, Francesca</creator><creator>Riba, Jordi-Roger</creator><creator>Ruperez, Elisa</creator><creator>Sanllehi, Josep</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20170901</creationdate><title>A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements</title><author>Capelli, Francesca ; Riba, Jordi-Roger ; Ruperez, Elisa ; Sanllehi, Josep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-964ac690f83b5ad3cf0e7daf69a5fcd2afd8a8157a9427d7218b3f5ccec529343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorismes genètics</topic><topic>Connectors</topic><topic>Connectors elèctrics</topic><topic>Contact pressure</topic><topic>Contact resistance</topic><topic>Control elèctric</topic><topic>Electric connectors</topic><topic>Electric contacts</topic><topic>Electric equipment</topic><topic>Electrical resistance</topic><topic>Enginyeria elèctrica</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Genetic algorithms</topic><topic>genetic algorithms (GAs)</topic><topic>Lògica matemàtica</topic><topic>Maquinària i aparells elèctrics</topic><topic>Matemàtiques i estadística</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Resistència de materials</topic><topic>Rough surfaces</topic><topic>Service life</topic><topic>Substations</topic><topic>Surface resistance</topic><topic>Surface roughness</topic><topic>Testing</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capelli, Francesca</creatorcontrib><creatorcontrib>Riba, Jordi-Roger</creatorcontrib><creatorcontrib>Ruperez, Elisa</creatorcontrib><creatorcontrib>Sanllehi, Josep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Capelli, Francesca</au><au>Riba, Jordi-Roger</au><au>Ruperez, Elisa</au><au>Sanllehi, Josep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>66</volume><issue>9</issue><spage>2437</spage><epage>2447</epage><pages>2437-2447</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The electrical contact resistance greatly influences the thermal behavior of substation connectors and other electrical equipment. During the design stage of such electrical devices, it is essential to accurately predict the contact resistance to achieve an optimal thermal behavior, thus ensuring contact stability and extended service life. This paper develops a genetic algorithm (GA) approach to determine the optimal values of the parameters of a fractal model of rough surfaces to accurately predict the measured value of the surface roughness. This GA-optimized fractal model provides an accurate prediction of the contact resistance when the electrical and mechanical properties of the contacting materials, surface roughness, contact pressure, and apparent area of contact are known. Experimental results corroborate the usefulness and accuracy of the proposed approach. Although the proposed model has been validated for substation connectors, it can also be applied in the design stage of many other electrical equipments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2017.2707938</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2017-09, Vol.66 (9), p.2437-2447
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_7945532
source IEEE Electronic Library (IEL)
subjects Algorismes genètics
Connectors
Connectors elèctrics
Contact pressure
Contact resistance
Control elèctric
Electric connectors
Electric contacts
Electric equipment
Electrical resistance
Enginyeria elèctrica
Fractal models
Fractals
Genetic algorithms
genetic algorithms (GAs)
Lògica matemàtica
Maquinària i aparells elèctrics
Matemàtiques i estadística
Materials
Mechanical properties
Resistència de materials
Rough surfaces
Service life
Substations
Surface resistance
Surface roughness
Testing
Thermal resistance
Thermodynamic properties
Àrees temàtiques de la UPC
title A Genetic-Algorithm-Optimized Fractal Model to Predict the Constriction Resistance From Surface Roughness Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genetic-Algorithm-Optimized%20Fractal%20Model%20to%20Predict%20the%20Constriction%20Resistance%20From%20Surface%20Roughness%20Measurements&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Capelli,%20Francesca&rft.date=2017-09-01&rft.volume=66&rft.issue=9&rft.spage=2437&rft.epage=2447&rft.pages=2437-2447&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2017.2707938&rft_dat=%3Cproquest_RIE%3E2221340875%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221340875&rft_id=info:pmid/&rft_ieee_id=7945532&rfr_iscdi=true