High-Energy Electron-Induced SEUs and Jovian Environment Impact
We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2017-08, Vol.64 (8), p.2016-2022 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2022 |
---|---|
container_issue | 8 |
container_start_page | 2016 |
container_title | IEEE transactions on nuclear science |
container_volume | 64 |
creator | Tali, Maris Alia, Ruben Garcia Brugger, Markus Ferlet-Cavrois, Veronique Corsini, Roberto Farabolini, Wilfrid Mohammadzadeh, Ali Santin, Giovanni Virtanen, Ari |
description | We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiation environment due to the intense high-energy electron flux in the trapped radiation belts. Insight is given to the possible contribution of electrons to the overall upset rates in the Jovian radiation environment. Relative contributions of both typical electron and proton spectra created when the environmental spectra are transported through a typical spacecraft shielding are shown and the different mission phases are discussed. |
doi_str_mv | 10.1109/TNS.2017.2713445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7944600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944600</ieee_id><sourcerecordid>2174416600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2504fad3855074f1f7833eb17097908d4b5db11fb3258b196e7db38a775b98a03</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBc-Z7TbIkJ5FR3WToYds5pG06O7Z0Jt1g_70tG54ej_f9fg8-Qh4RRoigX5Zfi1EKKEepRMa5uCIDFEJRFFJdkwEAKqq51rfkLsZNt3IBYkBep_X6h2behfUpybauaEPj6cyXh8KVySJbxcT6MvlsjrX1SeaPdXffOd8ms93eFu09uansNrqHyxyS1Xu2nEzp_PtjNnmb04IxaGkqgFe2ZEoIkLzCSirGXI4StNSgSp6LMkescpYKlaMeO1nmTFkpRa6VBTYkz-fefWh-Dy62ZtMcgu9emhQl5zgeQ0_BmSpCE2NwldmHemfDySCYXpPpNJlek7lo6iJP50jtnPvHpea8L_wDH2NhLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174416600</pqid></control><display><type>article</type><title>High-Energy Electron-Induced SEUs and Jovian Environment Impact</title><source>IEEE Electronic Library (IEL)</source><creator>Tali, Maris ; Alia, Ruben Garcia ; Brugger, Markus ; Ferlet-Cavrois, Veronique ; Corsini, Roberto ; Farabolini, Wilfrid ; Mohammadzadeh, Ali ; Santin, Giovanni ; Virtanen, Ari</creator><creatorcontrib>Tali, Maris ; Alia, Ruben Garcia ; Brugger, Markus ; Ferlet-Cavrois, Veronique ; Corsini, Roberto ; Farabolini, Wilfrid ; Mohammadzadeh, Ali ; Santin, Giovanni ; Virtanen, Ari</creatorcontrib><description>We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiation environment due to the intense high-energy electron flux in the trapped radiation belts. Insight is given to the possible contribution of electrons to the overall upset rates in the Jovian radiation environment. Relative contributions of both typical electron and proton spectra created when the environmental spectra are transported through a typical spacecraft shielding are shown and the different mission phases are discussed.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2017.2713445</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cross-sections ; Dosage ; Electron beams ; Electron density ; Electrons ; Energy ; Environmental impact ; Icy satellites ; Jupiter ; Jupiter satellites ; Laser beams ; Measurement by laser beam ; Monitoring ; Monte Carlo methods ; Neutron flux ; Neutrons ; Photonics ; Protons ; Radiation ; Radiation belts ; radiation effects ; Radiation shielding ; Single event upsets ; Space exploration ; Spacecraft ; Spacecraft shielding</subject><ispartof>IEEE transactions on nuclear science, 2017-08, Vol.64 (8), p.2016-2022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2504fad3855074f1f7833eb17097908d4b5db11fb3258b196e7db38a775b98a03</citedby><cites>FETCH-LOGICAL-c330t-2504fad3855074f1f7833eb17097908d4b5db11fb3258b196e7db38a775b98a03</cites><orcidid>0000-0001-9592-4756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tali, Maris</creatorcontrib><creatorcontrib>Alia, Ruben Garcia</creatorcontrib><creatorcontrib>Brugger, Markus</creatorcontrib><creatorcontrib>Ferlet-Cavrois, Veronique</creatorcontrib><creatorcontrib>Corsini, Roberto</creatorcontrib><creatorcontrib>Farabolini, Wilfrid</creatorcontrib><creatorcontrib>Mohammadzadeh, Ali</creatorcontrib><creatorcontrib>Santin, Giovanni</creatorcontrib><creatorcontrib>Virtanen, Ari</creatorcontrib><title>High-Energy Electron-Induced SEUs and Jovian Environment Impact</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiation environment due to the intense high-energy electron flux in the trapped radiation belts. Insight is given to the possible contribution of electrons to the overall upset rates in the Jovian radiation environment. Relative contributions of both typical electron and proton spectra created when the environmental spectra are transported through a typical spacecraft shielding are shown and the different mission phases are discussed.</description><subject>Cross-sections</subject><subject>Dosage</subject><subject>Electron beams</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Energy</subject><subject>Environmental impact</subject><subject>Icy satellites</subject><subject>Jupiter</subject><subject>Jupiter satellites</subject><subject>Laser beams</subject><subject>Measurement by laser beam</subject><subject>Monitoring</subject><subject>Monte Carlo methods</subject><subject>Neutron flux</subject><subject>Neutrons</subject><subject>Photonics</subject><subject>Protons</subject><subject>Radiation</subject><subject>Radiation belts</subject><subject>radiation effects</subject><subject>Radiation shielding</subject><subject>Single event upsets</subject><subject>Space exploration</subject><subject>Spacecraft</subject><subject>Spacecraft shielding</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvBc-Z7TbIkJ5FR3WToYds5pG06O7Z0Jt1g_70tG54ej_f9fg8-Qh4RRoigX5Zfi1EKKEepRMa5uCIDFEJRFFJdkwEAKqq51rfkLsZNt3IBYkBep_X6h2behfUpybauaEPj6cyXh8KVySJbxcT6MvlsjrX1SeaPdXffOd8ms93eFu09uansNrqHyxyS1Xu2nEzp_PtjNnmb04IxaGkqgFe2ZEoIkLzCSirGXI4StNSgSp6LMkescpYKlaMeO1nmTFkpRa6VBTYkz-fefWh-Dy62ZtMcgu9emhQl5zgeQ0_BmSpCE2NwldmHemfDySCYXpPpNJlek7lo6iJP50jtnPvHpea8L_wDH2NhLQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Tali, Maris</creator><creator>Alia, Ruben Garcia</creator><creator>Brugger, Markus</creator><creator>Ferlet-Cavrois, Veronique</creator><creator>Corsini, Roberto</creator><creator>Farabolini, Wilfrid</creator><creator>Mohammadzadeh, Ali</creator><creator>Santin, Giovanni</creator><creator>Virtanen, Ari</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9592-4756</orcidid></search><sort><creationdate>20170801</creationdate><title>High-Energy Electron-Induced SEUs and Jovian Environment Impact</title><author>Tali, Maris ; Alia, Ruben Garcia ; Brugger, Markus ; Ferlet-Cavrois, Veronique ; Corsini, Roberto ; Farabolini, Wilfrid ; Mohammadzadeh, Ali ; Santin, Giovanni ; Virtanen, Ari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2504fad3855074f1f7833eb17097908d4b5db11fb3258b196e7db38a775b98a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cross-sections</topic><topic>Dosage</topic><topic>Electron beams</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Energy</topic><topic>Environmental impact</topic><topic>Icy satellites</topic><topic>Jupiter</topic><topic>Jupiter satellites</topic><topic>Laser beams</topic><topic>Measurement by laser beam</topic><topic>Monitoring</topic><topic>Monte Carlo methods</topic><topic>Neutron flux</topic><topic>Neutrons</topic><topic>Photonics</topic><topic>Protons</topic><topic>Radiation</topic><topic>Radiation belts</topic><topic>radiation effects</topic><topic>Radiation shielding</topic><topic>Single event upsets</topic><topic>Space exploration</topic><topic>Spacecraft</topic><topic>Spacecraft shielding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tali, Maris</creatorcontrib><creatorcontrib>Alia, Ruben Garcia</creatorcontrib><creatorcontrib>Brugger, Markus</creatorcontrib><creatorcontrib>Ferlet-Cavrois, Veronique</creatorcontrib><creatorcontrib>Corsini, Roberto</creatorcontrib><creatorcontrib>Farabolini, Wilfrid</creatorcontrib><creatorcontrib>Mohammadzadeh, Ali</creatorcontrib><creatorcontrib>Santin, Giovanni</creatorcontrib><creatorcontrib>Virtanen, Ari</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tali, Maris</au><au>Alia, Ruben Garcia</au><au>Brugger, Markus</au><au>Ferlet-Cavrois, Veronique</au><au>Corsini, Roberto</au><au>Farabolini, Wilfrid</au><au>Mohammadzadeh, Ali</au><au>Santin, Giovanni</au><au>Virtanen, Ari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Energy Electron-Induced SEUs and Jovian Environment Impact</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>2016</spage><epage>2022</epage><pages>2016-2022</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We present experimental evidence of electron-induced upsets in a reference European Space Agency (ESA) single event upset (SEU) monitor, induced by a 200-MeV electron beam at the Very energetic Electronic facility for Space Planetary Exploration in harsh Radiation environments facility at CERN. Comparison of experimental cross sections and simulated cross sections is shown and the differences are analyzed. Possible secondary contributions to the upset rate by neutrons, flash effects, and cumulative dose effects are discussed, showing that electronuclear reactions are the expected SEU mechanism. The ESA Jupiter Icy Moons Explorer mission, to be launched in 2022, presents a challenging radiation environment due to the intense high-energy electron flux in the trapped radiation belts. Insight is given to the possible contribution of electrons to the overall upset rates in the Jovian radiation environment. Relative contributions of both typical electron and proton spectra created when the environmental spectra are transported through a typical spacecraft shielding are shown and the different mission phases are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2017.2713445</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9592-4756</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2017-08, Vol.64 (8), p.2016-2022 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_7944600 |
source | IEEE Electronic Library (IEL) |
subjects | Cross-sections Dosage Electron beams Electron density Electrons Energy Environmental impact Icy satellites Jupiter Jupiter satellites Laser beams Measurement by laser beam Monitoring Monte Carlo methods Neutron flux Neutrons Photonics Protons Radiation Radiation belts radiation effects Radiation shielding Single event upsets Space exploration Spacecraft Spacecraft shielding |
title | High-Energy Electron-Induced SEUs and Jovian Environment Impact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Energy%20Electron-Induced%20SEUs%20and%20Jovian%20Environment%20Impact&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Tali,%20Maris&rft.date=2017-08-01&rft.volume=64&rft.issue=8&rft.spage=2016&rft.epage=2022&rft.pages=2016-2022&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2017.2713445&rft_dat=%3Cproquest_RIE%3E2174416600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174416600&rft_id=info:pmid/&rft_ieee_id=7944600&rfr_iscdi=true |