Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays
This paper presents an adaptive neural control strategy for an {n} -link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the {n} -li...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2228 |
---|---|
container_issue | 12 |
container_start_page | 2219 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 48 |
creator | Li, Da-Peng Li, Dong-Juan |
description | This paper presents an adaptive neural control strategy for an {n} -link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the {n} -link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results. |
doi_str_mv | 10.1109/TSMC.2017.2703921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7944578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944578</ieee_id><sourcerecordid>2135276578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElXpByA2llin-JH4sazCU2pBoiksI8dxwG1qF8cB-vckasVqZjT33hmdKLpEcIoQFDf5cpFNMURsihkkAqOTaIQR5THGBJ_-94ieR5O2XUMIEeaUQDqKfmeV3AXzrcGz7rxsQO6l2hj7ATJng3cNqJ0H0oKVVdoHaSxYBhn0sG6D72ddgVdXumAUWEhrdl0jQ295N-GzN22s-7EgN1sdv0m_H4JvdSP37UV0Vsum1ZNjHUer-7s8e4znLw9P2WweKyxIiEuiFCdVyjktqRIpQ5xypmjFkFAVV7WANSorhrVKcMkIR5TKSohESFoltCbj6PqQu_Puq9NtKNau87Y_WWBEUsxoynivQgeV8q5tva6LnTfb_uECwWJgXAyMi4FxcWTce64OHqO1_tczkSRD4h_NEHjp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135276578</pqid></control><display><type>article</type><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Da-Peng ; Li, Dong-Juan</creator><creatorcontrib>Li, Da-Peng ; Li, Dong-Juan</creatorcontrib><description><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2703921</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Backstepping ; Barrier Lyapunov functions (BLFs) ; Computer simulation ; Control algorithms ; Control theory ; Delay effects ; Delays ; Iterative methods ; Liapunov functions ; Manipulators ; Neural networks ; robot ; Robot arms ; Robot kinematics ; Robots ; the neural networks (NNs) ; time-varying delay systems ; Time-varying systems ; Tracking control ; Tracking errors</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</citedby><cites>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</cites><orcidid>0000-0002-1584-8528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Da-Peng</creatorcontrib><creatorcontrib>Li, Dong-Juan</creatorcontrib><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Backstepping</subject><subject>Barrier Lyapunov functions (BLFs)</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Iterative methods</subject><subject>Liapunov functions</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>robot</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>the neural networks (NNs)</subject><subject>time-varying delay systems</subject><subject>Time-varying systems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEElXpByA2llin-JH4sazCU2pBoiksI8dxwG1qF8cB-vckasVqZjT33hmdKLpEcIoQFDf5cpFNMURsihkkAqOTaIQR5THGBJ_-94ieR5O2XUMIEeaUQDqKfmeV3AXzrcGz7rxsQO6l2hj7ATJng3cNqJ0H0oKVVdoHaSxYBhn0sG6D72ddgVdXumAUWEhrdl0jQ295N-GzN22s-7EgN1sdv0m_H4JvdSP37UV0Vsum1ZNjHUer-7s8e4znLw9P2WweKyxIiEuiFCdVyjktqRIpQ5xypmjFkFAVV7WANSorhrVKcMkIR5TKSohESFoltCbj6PqQu_Puq9NtKNau87Y_WWBEUsxoynivQgeV8q5tva6LnTfb_uECwWJgXAyMi4FxcWTce64OHqO1_tczkSRD4h_NEHjp</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Li, Da-Peng</creator><creator>Li, Dong-Juan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1584-8528</orcidid></search><sort><creationdate>20181201</creationdate><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><author>Li, Da-Peng ; Li, Dong-Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Backstepping</topic><topic>Barrier Lyapunov functions (BLFs)</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Iterative methods</topic><topic>Liapunov functions</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>robot</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>the neural networks (NNs)</topic><topic>time-varying delay systems</topic><topic>Time-varying systems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Da-Peng</creatorcontrib><creatorcontrib>Li, Dong-Juan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Da-Peng</au><au>Li, Dong-Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>48</volume><issue>12</issue><spage>2219</spage><epage>2228</epage><pages>2219-2228</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2703921</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1584-8528</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_ieee_primary_7944578 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive systems Backstepping Barrier Lyapunov functions (BLFs) Computer simulation Control algorithms Control theory Delay effects Delays Iterative methods Liapunov functions Manipulators Neural networks robot Robot arms Robot kinematics Robots the neural networks (NNs) time-varying delay systems Time-varying systems Tracking control Tracking errors |
title | Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Tracking%20Control%20for%20an%20Uncertain%20State%20Constrained%20Robotic%20Manipulator%20With%20Unknown%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Li,%20Da-Peng&rft.date=2018-12-01&rft.volume=48&rft.issue=12&rft.spage=2219&rft.epage=2228&rft.pages=2219-2228&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2703921&rft_dat=%3Cproquest_RIE%3E2135276578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135276578&rft_id=info:pmid/&rft_ieee_id=7944578&rfr_iscdi=true |