Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays

This paper presents an adaptive neural control strategy for an {n} -link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the {n} -li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228
Hauptverfasser: Li, Da-Peng, Li, Dong-Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2228
container_issue 12
container_start_page 2219
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 48
creator Li, Da-Peng
Li, Dong-Juan
description This paper presents an adaptive neural control strategy for an {n} -link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the {n} -link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.
doi_str_mv 10.1109/TSMC.2017.2703921
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7944578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944578</ieee_id><sourcerecordid>2135276578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElXpByA2llin-JH4sazCU2pBoiksI8dxwG1qF8cB-vckasVqZjT33hmdKLpEcIoQFDf5cpFNMURsihkkAqOTaIQR5THGBJ_-94ieR5O2XUMIEeaUQDqKfmeV3AXzrcGz7rxsQO6l2hj7ATJng3cNqJ0H0oKVVdoHaSxYBhn0sG6D72ddgVdXumAUWEhrdl0jQ295N-GzN22s-7EgN1sdv0m_H4JvdSP37UV0Vsum1ZNjHUer-7s8e4znLw9P2WweKyxIiEuiFCdVyjktqRIpQ5xypmjFkFAVV7WANSorhrVKcMkIR5TKSohESFoltCbj6PqQu_Puq9NtKNau87Y_WWBEUsxoynivQgeV8q5tva6LnTfb_uECwWJgXAyMi4FxcWTce64OHqO1_tczkSRD4h_NEHjp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135276578</pqid></control><display><type>article</type><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Da-Peng ; Li, Dong-Juan</creator><creatorcontrib>Li, Da-Peng ; Li, Dong-Juan</creatorcontrib><description><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2703921</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Backstepping ; Barrier Lyapunov functions (BLFs) ; Computer simulation ; Control algorithms ; Control theory ; Delay effects ; Delays ; Iterative methods ; Liapunov functions ; Manipulators ; Neural networks ; robot ; Robot arms ; Robot kinematics ; Robots ; the neural networks (NNs) ; time-varying delay systems ; Time-varying systems ; Tracking control ; Tracking errors</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</citedby><cites>FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</cites><orcidid>0000-0002-1584-8528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Da-Peng</creatorcontrib><creatorcontrib>Li, Dong-Juan</creatorcontrib><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Backstepping</subject><subject>Barrier Lyapunov functions (BLFs)</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Delay effects</subject><subject>Delays</subject><subject>Iterative methods</subject><subject>Liapunov functions</subject><subject>Manipulators</subject><subject>Neural networks</subject><subject>robot</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>the neural networks (NNs)</subject><subject>time-varying delay systems</subject><subject>Time-varying systems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEElXpByA2llin-JH4sazCU2pBoiksI8dxwG1qF8cB-vckasVqZjT33hmdKLpEcIoQFDf5cpFNMURsihkkAqOTaIQR5THGBJ_-94ieR5O2XUMIEeaUQDqKfmeV3AXzrcGz7rxsQO6l2hj7ATJng3cNqJ0H0oKVVdoHaSxYBhn0sG6D72ddgVdXumAUWEhrdl0jQ295N-GzN22s-7EgN1sdv0m_H4JvdSP37UV0Vsum1ZNjHUer-7s8e4znLw9P2WweKyxIiEuiFCdVyjktqRIpQ5xypmjFkFAVV7WANSorhrVKcMkIR5TKSohESFoltCbj6PqQu_Puq9NtKNau87Y_WWBEUsxoynivQgeV8q5tva6LnTfb_uECwWJgXAyMi4FxcWTce64OHqO1_tczkSRD4h_NEHjp</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Li, Da-Peng</creator><creator>Li, Dong-Juan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1584-8528</orcidid></search><sort><creationdate>20181201</creationdate><title>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</title><author>Li, Da-Peng ; Li, Dong-Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b3cc83d5886b6c95718687c6d719cd8cf90f1bd72ec42b738166ad9949a6d46f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Backstepping</topic><topic>Barrier Lyapunov functions (BLFs)</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Delay effects</topic><topic>Delays</topic><topic>Iterative methods</topic><topic>Liapunov functions</topic><topic>Manipulators</topic><topic>Neural networks</topic><topic>robot</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>the neural networks (NNs)</topic><topic>time-varying delay systems</topic><topic>Time-varying systems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Da-Peng</creatorcontrib><creatorcontrib>Li, Dong-Juan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Da-Peng</au><au>Li, Dong-Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>48</volume><issue>12</issue><spage>2219</spage><epage>2228</epage><pages>2219-2228</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract><![CDATA[This paper presents an adaptive neural control strategy for an <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the <inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2703921</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1584-8528</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2018-12, Vol.48 (12), p.2219-2228
issn 2168-2216
2168-2232
language eng
recordid cdi_ieee_primary_7944578
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive systems
Backstepping
Barrier Lyapunov functions (BLFs)
Computer simulation
Control algorithms
Control theory
Delay effects
Delays
Iterative methods
Liapunov functions
Manipulators
Neural networks
robot
Robot arms
Robot kinematics
Robots
the neural networks (NNs)
time-varying delay systems
Time-varying systems
Tracking control
Tracking errors
title Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Tracking%20Control%20for%20an%20Uncertain%20State%20Constrained%20Robotic%20Manipulator%20With%20Unknown%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Li,%20Da-Peng&rft.date=2018-12-01&rft.volume=48&rft.issue=12&rft.spage=2219&rft.epage=2228&rft.pages=2219-2228&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2703921&rft_dat=%3Cproquest_RIE%3E2135276578%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135276578&rft_id=info:pmid/&rft_ieee_id=7944578&rfr_iscdi=true